Crime Report Project

Nicholas Perez
Gabriel Bahr
Mission Objective

Predict Property Crime in the City of Austin, Texas

Steps
- Utilized data on years 2010-2016 provided by the City of Austin, Uniform Crime Report and US Census Data
- Analyzed crime data on 4 separate offenses, Robbery, Burglary, Theft, and Motor Vehicle Theft.
- Focused on specific Zip-Codes and Census Tract data that offenses were perpetrated in to predict an outcome.
Terminology

Theft:
Any time there in an unauthorized taking of property from another with the intent to permanently deprive that person of the property.

Robbery:
Essentially theft accomplished through the use of physical force or fear.

Burglary:
The unlawful entry into a structure, such as a home or business, with the intent to commit a crime inside.

Vehicle-Theft:
The theft or attempted theft of a motor vehicle.
Population in the City of Austin by ZIP

• Degrees of population change from 2010-2015
Predictive Models

Three Main Issues:

- Complexity of Predictive Policing
- Incredible amount of Variables
- Opportunity and Human Behavior

So where did we focus?

- Using the crimes committed in a specific place to pattern corresponding offenses
- Introduce variables which “might” have an impact on the rates of crime.
Change in Crime

- 2016-”2017”
 Ran the decision tree analysis using changes in the average crime rate between all 4 types for each year.
 Provided an Rsquare value of .502, mediocre but with this varied of data we consider that applicable
Robbery

Highest Zips= Cluster 2, 78758, 78753, 78741
Analyzing Census Tract Data

• Why Census Tract?
 • Gives Police Departments and Law Enforcement one level lower to analyze.
 • Ran a HP Forest analysis to allocate better areas of crime.
 • Utilized a 3 cluster target variable.

<table>
<thead>
<tr>
<th>Target</th>
<th>Target Label</th>
<th>Fit Statistics</th>
<th>Statistics Label</th>
<th>Train</th>
<th>Validation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster</td>
<td>ASE</td>
<td>Average Squ.</td>
<td></td>
<td>0.033817</td>
<td>0.029293</td>
</tr>
<tr>
<td>Cluster</td>
<td>DIV</td>
<td>Divisor for A.</td>
<td></td>
<td>72</td>
<td>36</td>
</tr>
<tr>
<td>Cluster</td>
<td>MAX</td>
<td>Maximum A.</td>
<td></td>
<td>0.645567</td>
<td>0.645567</td>
</tr>
<tr>
<td>Cluster</td>
<td>NOBS</td>
<td>Sum of Fre.</td>
<td></td>
<td>24</td>
<td>12</td>
</tr>
<tr>
<td>Cluster</td>
<td>RASE</td>
<td>Root Avera.</td>
<td></td>
<td>0.183894</td>
<td>0.171151</td>
</tr>
<tr>
<td>Cluster</td>
<td>SSE</td>
<td>Sum of Squ.</td>
<td></td>
<td>2.434811</td>
<td>1.054534</td>
</tr>
<tr>
<td>Cluster</td>
<td>DISF</td>
<td>Frequency ...</td>
<td></td>
<td>24</td>
<td>12</td>
</tr>
<tr>
<td>Cluster</td>
<td>MISC</td>
<td>Misclassification</td>
<td></td>
<td>0.083333</td>
<td>0.083333</td>
</tr>
<tr>
<td>Cluster</td>
<td>WRONG</td>
<td>Number of ...</td>
<td></td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
Interpreting Census Tract Data

• Allocating the target variables to the 3 clusters allowed us to achieve a reliable dataset.
• We wanted to focus on cluster 2 for this analysis since JMP designated this the smallest cluster. These zip codes included 78741, 78753, 78758. And had the highest frequency in EM.
Findings About Crimes

City of Austin
- Our cluster 2 and Zip Code data showed that zip codes in the 78500 area have some of the highest crime rates.
- NE side of the City of Austin according to our data shows the highest level of crime and most likely area where crime will occur in the next year.

Crimes Over Time
- Unfortunately, as Austin’s City limits and population increase the opportunity for property crime will also increase.
- We hope that with this data Austin will be able to allocate resources for fighting crime in these susceptible areas.