Cycling is one of the fastest growing recreational activity and sport in India. There are many NGOs (Non-government Organizations) supporting this emission free mode of transport and help protect environment from air pollution hazards. There are lot of cyclists groups in metropolitan areas which organize numerous ride events and build social networks. Though India was a bit late for joining the Internet, the social networking sites are getting popular in every Indian states and is expected to grow even faster after announcement of Digital India Project. There are many networking groups and cycling blogs sharing a plethora of information and resources across the globe. However one concern is that these blogs posts are hard to categorize according to their relevance. This makes it difficult to access required information quickly by referring to those blogs. This paper aims to provide ways to categorize the contents of these blog posts and classify them in meaningful categories for easy identification.

Recently the world witnessed the thrill of three weeks long, prestigious Tour de France. Even this year’s Ironman 70.3 world Championship, a world-wide popular triathlon which includes 56 mile bike ride out of total 70.3 mile journey, set new records of popularity. This race was marked by participation of a few Indian tri-athletes, one of them is a very well-known personality in Indian Cinemas, inspired lot of people in India to look at cycling as one of the best physical activities. The popularity and support for this environmental friendly sport is increasing day by day. There are many cycling groups (I was associated with one of them), organize various events such as Cyclothons, Velorides, Monsoon-Safari, etc. Many of them commute daily to their offices on bike inspiring others to do so and help minimize traffic issues in metropolitan cities of India. These groups make effective use of social networking sites and blogs to connect with each other. There is a lot of content shared on the Internet by these cyclists and bloggers summarizing their ride experience, advising newbies about bike selection and riding tips, promoting social cause such as tree plantation while riding to nearby City Mountains or sharing cool deals on bicycles. India being a bit new to advent of the Internet era, the content on the web is not yet categorized in meaningful groups. This makes it difficult to get the useful information at quickly. Wouldn’t it be nice if whenever someone posts a blog about cycling it automatically get classified into relevant categories? This project aims to provide such a tool (in JavaScript), if incorporated in the blogging site, would take care of content categorization based on the rules generated by SAS® Text Miner.

The textual data for our analysis is prepared using following steps. These steps include data extraction from online cyclist’s blogs, importing the textual data in SAS environment to create a SAS dataset, parsing the textual data to identify the term-document matrix and identify the linguistic terms, Text filtering to check for spelling errors using the dictionary. The detailed flow of the data preparation is explained in following steps.
DATA EXTRACTION

The textual data is collected from the cycling blogs using web-scraping. For web-scraping, BeautifulSoup4 package in python 2.7.10 is used. The web contents of the blogs are parsed using HTML parser in python. Once web content is available, the irrelevant blog contents (blog URLs, location etc.) is filtered and body of the blog post is extracted using regular expressions in python. These blog posts are extracted as independent text documents for further analysis. Following flow depicts the data extraction phase using python.

![Data Extraction Process Flow](image)

Figure 1 Data Extraction Process Flow

IMPORTING TEXTUAL DATA INTO SAS ENVIRONMENT

The textual data residing in number of blog files is imported into the SAS environment using Text import node in SAS® Text Miner. The import Source and destination directories are specified. The language used for the blogs is “English” and text size is set to 32000. This gathers the textual data spread across the documents to create a SAS dataset containing the textual data.

![Text Import Node](image)

Figure 2 Text Import Node

Out of 1,446 blog posts documents, one got truncated. That blog post consist of somewhere around 78,000 characters thus got omitted. The majority of the blog posts are between 27 to around 8000 words with a few documents of higher word counts. The output of text import node is depicted as below.

![Text Import Node Results](image)

Output 1 Text Import Node Results
METHODOLOGY

Once textual data is available in form of a SAS dataset, following two step methodology is used for text analytics [1].

1. Creating text clusters for identifying meaningful blog post categories.
2. Generating the text rules based on the categories identified in the above step.

CREATING TEXT CLUSTERS

For identifying meaningful categories of the blog posts, following text mining process flow is implemented.

![Figure 3 Modeling Diagram for Creating Text Clusters](image)

Text parsing

The textual dataset generated by SAS® Text import node is parsed to enumerate the terms contained in the document. It identifies the word terms based on various parts of speech present in the document. Following properties are altered in properties panel of Text Parsing node.

- “Detect different parts of speech” is turned off which limits the terms with same parts of speech.
- “Find Entities” is set to “Standard”.
- We have ignored following parts of speech which filters prepositions, determinants, auxiliary verbs etc. which generally contains very less information.
- We have ignored Numeric and Punctuation attributes.
- Also entities such as Currency, Internet, Measure, Person etc. are ignored.
- Even though Person entity is set to be ignored, the blog post contained Indian person names. The list of Indian names is gathered and included as a part of “Stop List” in Filter property. This significantly limited the number of terms.

![Figure 4 SAS Text Parsing Node property panel settings and Output](image)

Some of the terms such as “cycle”, “bike”, “ride” etc. are the most occurring words which is obvious as we are analyzing cycling blog posts.
Text Filtering

To reduce the number of terms used in the documents, text filter node is used. We have used English dictionary to identify and correct the spell check errors; if not handled, will result in keeping similar words as different terms expanding the term document matrix. Using filter viewer, we can view which all documents contain a specific term and also create concept links based on those terms. We have used Text filtering node with term weight property as “Inverse Document Frequency”.

The “Check Spelling” option corrected wrong spellings of the word “accessories” as shown below.

![EMWS4_TextFilter_spellIDS](image)

Output 2 Text Filtering Node output

Apart from the common English word synonyms identified using Text Parsing node, we have created a few custom synonyms list treating those terms as similar terms. Using interactive filter viewer, irrelevant terms are filtered. Some of the terms that are kept for further analysis are as follows.

![Terms](image)

Output 3 High Frequency Terms

CONCEPT LINKS

Concept links help in understanding the relationships between words based on the co-occurrence of words in the documents [1]. The hub and spoke structure of the concept link represents the association between those terms and width of the link represents the strength of association. Thicker is the link between two terms, stronger is the association between the terms [1]. Some of the important terms related to cycling blogs such as “Buy”, “Safe”, “Ride” and “Bike”, etc. are analyzed as below.

1. Buy: - As per the concept link shown below, among all the words associated with “Buy”, “Budget” is the most frequent term occurring together (57/83 i.e. 57 out of 83 documents in which the term budget occurs). This sounds reasonable, as for many people in India, budget is the most important parameter while making any purchase decisions. Also we can see, there are many people interested in buying “old” bikes and/or accessories (127/260) and discussing over the blogs about possible deals. The term “rs” represents Indian Currency, Rupees.
2. Safe: - In the matter of traveling on Indian roads, safety is the primary concern. The head injuries due to bad road conditions are frequent. Thus, head safety is discussed more on the blogs.

3. Ride: - Also morning rides are very common in India as most of the cities in India are pretty warm during daytime.
4. **Bike**: The term Bike is discussed most frequently in context of “Buy” (269/349) and “Sell” (165/210). There are many blog posts which seek “help” (243/348) in selecting suitable “bike”. Also there are frequent blog posts seeking suggestions for “good” (430/667) bikes to start. This concept link is very helpful in identifying the possible categories of the blog posts such as “Buy and Sell”, “Bike Advice” etc.

Output 7 Concept Link for the term “Bike”

Text Clustering

After filtering the irrelevant terms and combining similar terms, we used Text Cluster Node for clustering the blog posts into meaningful categories based on the terms present in them. The cluster algorithm is used is Expectation - Maximization. Initially with default properties, many clusters with overlapping terms were developed. We restricted the number of clusters in the property panel of Text Cluster Node and arrive at fewer clusters (E.g. 4, 5 and 6 clusters). Among those, 4 cluster solution is selected based on the least overlap among the descriptive terms. The cluster output is as follows.

Output 8 Text Clustering Node Output

The descriptive terms in this 4 cluster solution and their meaningful categories are as follows.

<table>
<thead>
<tr>
<th>Cluster ID</th>
<th>Descriptive Terms</th>
<th>Frequency (%)</th>
<th>Meaningful Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+life +feel +bicycle +work +old +find +people +first +year +help</td>
<td>520 (36%)</td>
<td>Ride Experience</td>
</tr>
<tr>
<td>2</td>
<td>+bike +price +sale +sell +interest +buy +contact +condition +frame +frame</td>
<td>170 (12%)</td>
<td>Buy and Sell</td>
</tr>
<tr>
<td>3</td>
<td>+bike +good +buy +budget +gear +suggestion +mb +brand +trek +suggestion</td>
<td>191 (13%)</td>
<td>Bicycle Advice</td>
</tr>
<tr>
<td>4</td>
<td>+ride +start +cyclist +join +group +plan +great +day +time +back</td>
<td>565 (39%)</td>
<td>Ride Events</td>
</tr>
</tbody>
</table>

Table 1 Descriptive Terms for the Text Clusters
GENERATING TEXT RULES FOR CATEGORIZATION

Once the clusters are identified, the categories are assigned as mentioned above and created a new SAS dataset with the blog posts as the text variable and category as the target variable. Using this datasets, content categorization code is generated in Text Rule Builder [3]. The model diagram is as follows.

Figure 5 Modeling Diagram for generating Text Rules for Categorization

The dataset is partitioned into training (70%) and validation (30%) for honest assessment. The text parsing settings are the same as used earlier as the dataset has the same textual data we worked earlier. The text filtering properties used are also similar to the one we worked earlier except the “term weight” option now used is “Mutual Information” since now we are predicting the categories of the blog posts.

Text Rule Builder Node

Using this node, text rules for categorizing the blog posts are generated. The “Generalization Error”, “Purity of Rules” and “Exhaustiveness” properties in the property panel of the node are set to “medium”. This ensures optimum rule generation without overfitting the model. We have used the option “Change Target Values” in the property panel to reassign some of the categories for generating correct text rules. For example, as per below figure, the highlighted rows predict the target as “Ride Events” but the original target was “Bicycle Advice”. After carefully going through the content it is found that this blog post should be categorized under bicycle buy and sell thus it is assigned a target value “Buy and Sell”.

Figure 6 “Change Target Values” setting of Text Rule Builder Node

Once all the changes for target values are completed, the text rule builder node is rerun to get the improved text model. The validation misclassification rate for this model is around 36%. This suggests, the text model could correctly classify 64% of the blog posts in the relevant categories. This model is fairly reasonable considering it has automatically built text rules to classify the blog posts which were scattered earlier on the blog websites.

Output 9 Fit Statistics for Text Rule Builder Node
The Text rule builder creates simple logical rules which classifies the text into meaningful categories based on correct keywords. The text rules generated contains multiple forms of the same verb or word. This is because for analyzing the text we can used the verbs stemmed to its root but for classifying the text, different forms must be identified. A sample rule for the category “Buy and Sell” is as shown below.

Output 10 Content Categorization Code of Text Rule Builder Node

Some of these rules are explained as below.

1. Buy and Sell

2. Bike Advice
IMPLEMENTATION

The Text Rule Builder node identified the keywords necessary for classifying the blog posts. Further a tool is developed in JavaScript which applies these text rules for predicting the blog categories. When the blog user enters the blog content, this JavaScript tool parses the entered text, identifies the keywords and apply the text rules built earlier to classify this text. Considering that user may commit some spelling mistakes while entering the text, the spell check English dictionary is included in the tool. This automatically detects the spelling errors and provide appropriate suggestions. Consider following example in which the user enters the wrong spelling for the word “accessories”. The tool provide the appropriate suggestion and identifies the relevant category.

![JavaScript based Implementation for classifying the blog posts](image)

This text model needs to be extended to incorporate other variations in the blog posts as well. Due to complexities in the blog posts data, sometimes you need to go through the blog posts manually to come up with the rules that will classify them in correct categories. This will improve the accuracy of the text model further. A sample JavaScript code is as shown below.

```javascript
if((text.indexOf('suggest') > -1) || (text.indexOf('suggestion') > -1)) &
((text.indexOf('bikes') > -1) || (text.indexOf('bike') > -1))
{
  suggestions.push('Bicycle Advice');
}
```

![Sample JavaScript Code Snippet](image)
CONCLUSION

- With the validation accuracy of around 66%, the text model performance is fairly reasonable compared to the earlier scattered blog posts.
- The classifier tool is in its earlier stage. With more blog posts available for training the tool will provide dynamic set of rules for classifying other categories of blog posts such as “Bicycle hacks”, “Nutrition” etc.

REFERENCES

1. Chakraborty, Goutam; Pagolu, Murali and Garla, Satish. *Text Mining and Analysis: Practical Methods, Examples, and Case Studies Using SAS®*

ACKNOWLEDGMENTS

I thank Mr. Digambar Chaudhari, Founder and CEO at ZERO Emission – Early morning riders (India) and a close friend of mine for his expert suggestions in cycling blog posts.

I also thank Dr. Goutam Chakraborty for his valuable guidance and motivation for accomplishing this paper.
CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Dr. Goutam Chakraborty
Oklahoma State University
Stillwater, OK, 74078
goutam.chakraborty@okstate.edu

Dr. Goutam Chakraborty is Ralph A. and Peggy A. Brenneman professor of marketing and founder of SAS® and OSU data mining certificate and SAS® and OSU marketing analytics certificate at Oklahoma State University. He has chaired the national conference for direct marketing educators for 2004 and 2005 and co-chaired 2007 data mining conference. He has over 25 years of experience in using SAS® for data analysis. He is also a Business Knowledge Series instructor for SAS®.

Heramb Joshi
Oklahoma State University
Stillwater, OK, 74075
heramb.joshi@okstate.edu

Heramb Joshi is a graduating Master’s student in Management Information Systems from Oklahoma State University. He has a bachelor’s degree in Electronics and Telecommunication engineering from Mumbai University. He worked as a graduate research assistant at CHSI Tulsa during June – August 2015. Earlier he worked as an ETL developer for 3 years managing data warehousing projects at L&T Infotech Ltd. Mumbai, India. He has two years’ experience in using SAS® tools for Database Marketing and Data Mining. He is a Base SAS® 9 certified professional, SAS Certified Advanced Programmer for SAS 9 Credential, SAS Certified Statistical Business Analyst Using SAS 9: Regression and Modeling Credential, and holds the SAS and OSU Data Mining certification.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.