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Abstract

Colinearity is blamed for all sorts of trouble in empirical work: inconclusive or weak results,
unexpected signs on coefficients, and general computational mayhem in nonlinear estimators.
Collinearity is a matter of degree since perfect collinearity has a perfectly easy solution.
Near perfect collinearity can be vexing however since it makes precise measurement of model
parameters particulary difficult in some cases.

A number of methods for detecting collinearity have been proposed. Some of these are
useful, others not. Hill and Adkins (2001) summarize the good and bad based on much of
the relevant literature up to 2001. They also make some recommendations for the detection
and amelioration of inadequate variation in the data.

The purpose of our paper is twofold: 1) update any significant findings on collinearity since
the Hill and Adkins (2001) survey and 2) to write and document gretl functions that perform
several regression diagnostic procedures not already present in the software. These include
the diagnostics suggested in Hill and Adkins (2001). In particular, we introduce hansl
routines to perform the variance decomposition of Belsely, Kuh, and Welch (1980) for both
linear and nonlinear models and provide a function to compute critical values for the Belsley
(1982) signal-to-noise ratio test. The use of these is explored in several examples.

1 Anything New?

In terms of advancing the state or collinearity diagnostics has anything new happened?
We’d have to say no, although Friendly and Kwan (2009) have suggested a clever method of
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visualizing the relationships among the variables. Proposals for dealing with collinearity have
been suggested, e.g. Hillebrand and Lee (2012), who shrink OLS to principal components
using a Stein estimator and Erkoç et al. (2010), who applies ridge regression to collinearity
in nonlinear models. We are still in the process of determining the best way to deal with
weak data or weakly identified models. There are proposals to ameliorate the ill-effects of
collinearity in linear and non-linear models, but it seems to us that the solutions (mostly
biased estimation of parameters) proceed without specific knowledge of whether the problem
is data driven, parameter driven, model driven, or a combination of the three. There are
several reasons why parameter variances are large and collinearity is only one of the possible
causes. The techniques in this paper do not solve these issues. At most, we extend the ways
that Belsley et al. (1980) employs to analyze weak data in linear models to nonlinear models.
Our experience is that the estimation of nonlinear models suffer from poor data as well as
bad model specification, and our goal is to explore how the linear diagnostics can be used in
a nonlinear setting. We can definitively say that we know nothing definitive.

In the following sections we review the diagnostics used in linear models and discuss their
extension to nonlinear models. All of this is based on the Belsley et al. (1980); Belsley (1982)
diagnostics based on condition numbers, variance decompositions, and tests of signal-to-noise
in regression. By analogy, we extend these to nonlinear models and propose gretl functions
to compute the diagnostics.

2 Linear Model

Denote the linear regression model as

y = Xβ + u

where y is a n × 1 vector of observations on the dependent variable, X is a n × k non-
stochastic matrix of observations on k explanatory variables, β is a k× 1 vector of unknown
parameters, and u is the n × 1 vector of uncorrelated random errors, with zero means and
constant variances,σ2. In the general linear model exact, or perfect, collinearity exists when
the columns of X, denoted xi, i = 1, . . . , K, are linearly dependent. That is, if there is at
least one relation of the form c1x1 + c2x2 + · · · + cKxk = 0, where the ci are constants, not
all equal to zero. In this case the column rank of X is less than k, and the normal equations
XTXβ = XTy do not have a unique solution, and least squares estimation breaks down.
Unique best linear unbiased estimators do not exist for all K parameters. However, even in
this most severe of cases, all is not lost.

Exact collinearity is rare, and easily recognized. More frequently, one or more linear combi-
nations of explanatory variables are nearly exact, so that c1x1 + c2x2 + · · ·+ cKxk ≈ 0. We
now examine the consequences of such near exact linear dependencies.
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2.1 Diagnosing Collinearity using the Eigenvalues and Eigenvec-
tors of XTX

The k × k matrix XTX is symmetric. For symmetric matrices their exists an orthonormal
k × k matrix C such that

CTXTXC = Λ (1)

where Λ is a diagonal matrix with the real values λ1, λ2, . . . , λk on the diagonal. An orthonor-
mal matrix, sometimes also called an orthogonal matrix, has the property that CT = C−1,
so that CTC = CCT = Ik, where Ik is a k × k identity matrix. The columns of the matrix
C, denoted ci, are the eigenvectors (or characteristic vectors) of the matrix, and the real
values λi are the corresponding eigenvalues (or characteristic roots). It is customary to as-
sume that the columns of C are arranged so that the eigenvalues are ordered by magnitude,
λ1 ≥ λ2 ≥ . . . ,≥ λk.

Silvey (1969) popularized the use of eigenvalues to diagnose collinearity, and Belsley et al.
(1980) [hereinafter BKW] refined, and improved, the analysis. The n × k matrix Z = XC
is called the matrix of principal components of X. The ith column of Z, zi, is called the
ith principal component. From equation (1) zi has the property that zTi zi = λi. If the
characteristic root λi = 0, then zi = Xci = 0; we have an exact linear relation among the
columns of X, and thus exact collinearity. If rank(X) = ` < k, then we will find k − `
eigenvalues that are zero.

If X is of full column rank k, so that there are no exact linear dependencies among the
columns of X, then is a positive definite and symmetric matrix, and all its eigenvalues are
not only real but also positive. If we find a “small” eigenvalue, λi ≈ 0 , then

λi = zTi zi = cTi X
TXci ≈ 0

and there is a near exact linear dependency among the columns of X. If there is a single
small eigenvalue, then the linear relation indicates the form of the linear dependency, and
which of the explanatory variables are involved in the relationship. If there are two (or
more) small eigenvalues, then we have two (or more) near exact linear relations. Multiple
linear relationships do not necessarily indicate the form of the linear dependencies. The
eigenvectors associated with the near zero eigenvalues define a 2-dimensional vector space in
which the two near exact linear dependencies exist. While we may not be able to identify the
individual relationships among the explanatory variables that are causing the collinearity,
we can identify the variables that appear in the two (or more) relations.

The singular-value decomposition of X is an alternative technique that achieves the same
goals as the analysis of eigenvalues. For computational reasons there are reasons to prefer the
singular-value decomposition, and the literature on collinearity is divided between the two
approaches. The matrixX may be decomposed asX = UDV T , where UTU = V TV = Ik and
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D is a diagonal matrix with non-negative diagonal values µ1, µ2, . . . , µk, called the singular
values of X.

The relation to eigen analysis is that the singular values are the positive square roots of the
eigenvalues of XTX, and the matrix V = C. A small singular value implies a near exact
linear dependence among the columns of X, just as does a small eigenvalue. We will ignore
the computational issues and treat these two approaches as equivalent.

2.2 Collinearity and the Least Squares Estimator

Using equation (1) and the properties of the matrix of eigenvectors C, we can write XTX =
XΛCT , and therefore

(XTX)−1 = CΛ−1CT =
k∑
i=1

λ−1
i cic

T
i (2)

defining C = {c1, c2, . . . , ck} to be the matrix of characteristic vectors. The covariance matrix
of the least squares estimator b is cov(b) = σ2(XTX)−1, and using equation (2) the variance
of bj is

var(bj) = σ2

(
c2j1
λ1

+
c2j2
λ2

+ . . .+
c2jk
λk

)
(3)

The orthonormality of C implies that
∑k
`=1 c

2
j` = 1, so variance of bj depends upon three

distinct factors. First, the magnitude of the error variance, σ2; second, the magnitudes of
the constants cjk; and third, the magnitude of the eigenvalues, λ`. A small eigenvalue may
cause a large variance for bj if it is paired with a constant cj` that is not close to zero. The
constants cj` = 0 when xj and x`, are orthogonal. This fact is an important one for it will
allow us to determine which variables are not involved in collinear relationships.

Suppose βj is a critical parameter in your model, and there is one small eigenvalue, λk ≈ 0.
If xj is not involved in the corresponding linear dependency , then cjk will be small, and
the fact that will not adversely affect the precision of estimation of βj. The presence of
collinearity in the data does not automatically mean that “all is lost.” If XTX has one or
more small eigenvalues, then you must think clearly about the objectives of your research,
and determine if the collinearity reduces the precision of estimation of your key parameters by
an unacceptable amount. This leads us to the next question, “What is a small eigenvalue?”

2.3 Variance Decomposition of Belsley et al. (1980)

A useful property of eigenvalues is that tr(XTX) =
∑k
i=1 λi. This implies that the size of

the eigenvalues is determined in part by the scaling of the data. Data matrices consisting of
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Condition Variance Proportions of OLS
Index var(b1) var(b2) · · · var(bk)

η1 φ11 φ12 · · · φ1k

η1 φ21 φ22 · · · φ2k

.

. · · · · · · · · · · · ·

.
ηk φk1 φk2 φkk

Table 1: Matrix of Variance Proportions

large numbers will have larger eigenvalues, in total, than data matrices with small numbers.
To remove the effect of scaling Belsley et al. (1980)), whose collinearity diagnostic procedure
is proposed here, suggest scaling the columns of X to unit length. This scaling is only for
the purpose of diagnosing collinearity, not for model estimation or interpretation.

To diagnose collinearity, examine the proportion of the variance of each least squares co-
efficient contributed by each individual eigenvalue. Define φjk = c2jk/λk, and let φj be the
variance of bj, apart from the error variance, σ2.

φj =

(
c2j1
λ1

+
c2j2
λ2

+ . . .+
c2jk
λk

)

Then, the proportion of the variance of bj associated with the kth eigenvalue λk is
φjk
φj

.

Note the reversal of the subscripts. This is convenient for tabling the variance proportions,
which has a now standard format. The columns of the table correspond to the variances of
individual least squares coefficients, and the sum of each column is one. The rows of this
matrix correspond to the different eigenvalues, which have been scaled in a certain way. The
“condition index” is the square root of the ratio of the largest eigenvalue, λ1, to the `th

largest, λ`, that is,

η` =

(
λ1
λ`

) 1
2

.

The condition indices are ordered in magnitude, with η1 = 1 and ηk being the largest, since
its denominator is the smallest eigenvalue.

Table 1 summarizes much of what we can learn about collinearity in data. BKW carried
out extensive simulations to determine how large condition indices affect the variances of
the least squares estimators. Their diagnostic procedures, also summarized in Belsley (1991,
Chapter 5), are these:

Step 1 Begin by identifying large condition indices. A small eigenvalue and a near exact
linear dependency among the columns of X is associated with each large condition in-
dex. BKWs experiments lead them to the general guidelines that indices in the range
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0-10 indicate weak near dependencies, 10-30 indicate moderately strong near depen-
dencies, 30-100 is a large condition index, associated with a strong near dependency,
and indices in excess of 100 are very strong. Thus when examining condition indexes
values of 30 and higher should immediately attract attention.

Step 2 If there is a single large condition number : Examine the variance-decomposition
proportions. If there is a single large condition number, indicating a single near
dependency associated with one small eigenvalue, collinearity adversely affects
estimation when two or more coefficients have 50% or more of their variance as-
sociated with the large condition index, in the last row of Table 1. The variables
involved in the near dependency have coefficients with large variance proportions.

If there are two or more large condition numbers of relatively equal magnitude
If there are J ≥ 2 large and roughly equal condition numbers, then XTX has J
eigenvalues that are near zero and J and there are J near exact linear dependen-
cies among the columns of X. Since the J corresponding eigenvectors span the
space containing the coefficients of the true linear dependence, the “50% rule” for
identifying the variables involved in the near dependencies must be modified. In
this case, sum the variance proportions for the coefficients across the J large con-
dition number rows in Table 1. The variables involved in the (set of) near linear
dependencies are identified by summed coefficient variance proportions of greater
than 50%. The variance proportions in a single row do not identify specific linear
dependencies, as they did when there was but one large condition number.

If there are two or more large condition numbers with one extremely large
An extremely large condition index, arising from a very small eigenvalue, can
“mask” the variables involved in other near exact linear dependencies. For ex-
ample, if one condition index is 500 and another is 50, then there are two near
exact linear dependencies among the columns of X. However, the variance de-
compositions associated with the condition number of 50 may not indicate that
there are two or more variables involved in a relationship. Identify the variables
involved in the set of near linear dependencies by summing the coefficient variance
proportions in the last J rows of Table 1, and locating the sums greater than 50%.

Step 3 Perhaps the most important step in the diagnostic process is determining which
coefficients are not affected by collinearity. If there is a single large condition number,
coefficients with variance proportions less than 50% in the last row of Table 1 are not
adversely affected by the collinear relationship in the data. If there are J ≥ 2 large
condition numbers, then sum the last J rows of variance proportions. Coefficients
with summed variance proportions of less than 50% are not adversely affected by the
collinear relationships. If the parameters of interest have coefficients unaffected by
collinearity, then small eigenvalues and large condition numbers are not a problem.

Step 4 If key parameter estimates are adversely affected by collinearity, further diagnostic
steps may be taken. If there is a single large condition index the variance proportions
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identify the variables involved in the near dependency. If there are multiple large
condition numbers, auxiliary regressions may be used to further study the nature of
the relationships between the columns of X. In these regressions one variable in a
near dependency is regressed upon the other variables in the identified set. The usual
t-statistics may be used as diagnostic tools to determine which variables are involved in
specific linear dependencies. See Belsley (1991, p. 144) for suggestions. Unfortunately,
these auxiliary regressions may also be confounded by collinearity, and thus they may
not be informative.

3 Signal-to-Noise Tests

Belsley (1982) considers a method for determining the presence of “weak data” using a test
that considers the size of a coefficient relative to its variability, that is its signal-to-noise
ratio (s/n). Combined with the condition number analysis and variance decomposition one
can diagnose whether a regression suffers from collinearity and/or from “short data.” Signal-
to-noise is defined as

τk ≡ βk/σbk (4)

where βk is the parameter value of the kth coefficient in the model and σbk is βk’s estima-
tor’s standard error; both are population parameters. The inverse of τk is often called the
coefficient of variation. Note that τk can be small either because the parameter (low signal)
βk is small or because the variance of its estimator is large (high noise). As Belsley points
out, there is a superficial resemblance to the usual t-ratio

tk = bk/sbk . (5)

The difference is that τk is a parameter and tk is a statistic that has a noncentral t-
distribution. Thus, tk is used as an estimator of τk. One should consult Belsley (1982)
for the rationale used for the test. For our purposes, we will state how to conduct the test
and to interpret the results.

In Belsley (1982, Section 3.2) the hypothesis to be tested is that the signal-to-noise level
exceeds some threshold. If it does, then the data are adequate and if the threshold is not
exceeded then the data are weak. The weakness may be due to collinearity or because it is
“short,” a concept that will be defined below. The null and alternative hypotheses are:

A0 : τ 2 = τ 2∗
A1 : τ 2 > τ 2∗

(6)

where the k subscript is dropped for notational simplicity and the hypothesized threshold
is subscripted with ∗, i.e., τ 2∗ . The test statistic is based on the usual Wald test statistic
used for testing hypotheses of the form H0: Rβ = r against H1: Rβ 6= r, where R is J × k
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matrix of known constants, Rank(R)= J ≤ k, and r is also known and J×1. This represents
J linear hypotheses about the unknown parameters of the model. Let b ∼ N(β,Σ) and Σ
consistently estimated via Σ̂. Then the Wald statistic is:

φ2 = (Rb− r)T (RΣ̂RT )−1(Rb− r) ∼ FJ,n−k(λ) (7)

where λ is the non-centrality parameter associated with statistic; its value depends on the
unknowns β and Σ. Belsley argues that the non-centrality of this statistic is equivalent to
the s/n parameter τ 2 and under the null hypothesis that the data are less than or equal to
the desired threshold

φ2 ∼ FJ,n−k(τ
2
∗ ) (8)

To test the hypothesis in (6), adopt a test size α (such as 0.05 or 0.1) and calculate

Fα ≡1−α FJ,n−k(τ
2
∗ ) (9)

which is the (1−α) critical value for the non-central F with J and n− k degrees of freedom
and non-centrality parameter τ 2∗ . Note that if J = 1 then φ2 = t2. In the absence of specific
knowledge of the parameters, it is reasonable to consider how far βj are from zero using the
t-ratio squared, i.e., t2 = (bj/sj)

2 where sj is the estimated standard error of the estimator
bj.

To conduct the test, a suitable non-centrality parameter has to be determined. Using iso-
density ellipsoids

(Rβ − r)T (RΣRT )−1(Rβ − r) ∼ γχ
2
J (10)

as a measure of adequate s/n, where γχ
2
J is the γ-critical value from the central chi-square

with J degrees of freedom. The parameter γ determines the size of the iso-ellipsoid that
captures the relationship between the true value of the parameters and their hypothesized
values. Larger values of γ increase the size of the ellipsoid and reduces the probability that
Rb = r.

The test then proceeds as:

1. Choose a level 0 ≤ γ < 1 to define the desired adequacy level for your test. Higher
levels of γ increase the stringency of evidence required for the s/n to be adequate.

2. Choose a test size α for the s/n test statistic. Then, compute the relevant critical value
using

Fα = 1−αFJ,n−k(γχ
2
J) (11)

3. If φ2 > Fα reject A0 in favor of A1.

There are four reasons why A0 may not be rejected (and the data deemed to be weak).
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1. Rβ ≈ r. For instance, suppose a coefficient is close to zero, βi ≈ 0. In this case there
is very little signal.

2. The greater the inherent noise, the smaller the statistic. In a linear model this might
be due to σ2� 0.

3. Greater collinearity.

4. Short data. For instance, a particular variable in a linear model, xj, might be short
in the sense that xTj xj ≈ 0. Rescaling xj won’t help since it changes the signal by an
equivalent amount.

4 Collinearity in Nonlinear Models

Assessing the severity and consequences of collinearity in nonlinear models is more compli-
cated than in linear models. To illustrate the difficulties, we will first discuss its detection in
a nonlinear least squares model and then in the context of maximum likelihood estimation
and generalized linear models. The basic BKW variance decomposition analysis extends
easily to these situation.

4.1 Nonlinear Least Squares

Consider the nonlinear model
y = f(X, β) + e (12)

where e ∼ (0, σ2IT ) and f(X, β) is some nonlinear function that relates the independent
variables and parameters to form the systematic portion of the model. The nonlinear least
squares estimator chooses β̂ to minimize S(β) = eT e. The least squares solution is

Z(β)T [y − f(X, β)] = 0 (13)

where Z(β) = ∂f(X, β)/∂β. The matrix of second derivatives is referred to as the Hessian
and is H(β) = ∂2f(X, β)/∂ββT . If there is more than one value of β that minimizes S, then
the parameters of the model are unidentified and cannot be estimated. This occurs when
the Hessian is singular and corresponds to perfect collinearity in the linear model. When the
Hessian is nearly singular, then the model is poorly identified and reliable estimates may be
difficult to obtain.

A useful algorithm for finding the minimum of S(β) is the Gauss-Newton. The Gauss-
Newton algorithm is based on a first order Taylor’s series expansion of f(X, β) around an
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initial guess, β1, for the parameters, β. From that a pseudo-linear model is constructed

ȳ(β) = Z(β1)β + e (14)

where ȳ(β) = y−f(x, β1)+Z(β1)β1. Notice that the depedent variable, ȳ(β) and the regres-
sors, Z(β1) are completely determined given β1. The next round estimate, β2 is obtained by
using ordinary least squares on the pseudo-linear model, β2 = [Z(β1)

TZ(β1)]
−1Z(β1)

T ȳ(β1),
on equation (14). The iterations continue until βn=1 ≈ βn.

It can be shown that asymptotically

Z(β)TZ(β)/2T
.
= H(β)/T. (15)

Therefore, if H is nearly singular, then Z(β)TZ(β) will be as well. This implies that the
columns of Z(β) can be treated as regressors and analyzed using the diagnostic procedures
discussed in the preceding sections.

The Gauss-Newton algorithm is affected by collinearity when [Z(βn)TZ(βn)] becomes singu-
lar for any of its iterations. In fact, the model could be well conditioned at the final solution,
but be nearly singular at one of the many intermediate points visited by the Gauss-Newton
algorithm. Unfortunately, when a near singularity is encountered the algorithm becomes
numerically unstable and it often fails to converge. A solution here is to pick better starting
values that avoid regions of the parameter space for which the function is ill conditioned.

A more common scenario is that the function itself is badly behaved for many points in the
parameter space, including the actual minimum. In this instance, the collinearity problem is
very similar to that in linear models and can be examined by using the collinearity diagnostics
discussed above on the matrix of pseudo-regressors, Z(βn).

The conditioning of the data can be influenced to some degree by rescaling the data. Many
convergence problems can be solved simply by scaling your variables in the appropriate way.
On the other hand, the ill-effects of collinearity may persist regarless of scaling. By this
we mean that precise estimates of the parameters are just not possible with the given data
no matter how they are scaled. To detect collinearity in this setup it is suggested that the
the columns of Z(β) be rescaled to have the same length before computing the collinearity
diagnostics. Large condition numbers indicate collinearity that cannot be further mitigated
by scaling.

Although there are other algorithms for finding the minimum of S(β) they are all likely to
suffer the same ill-effects from collinearity.1 It is possible that some may be better behaved
in the intermediate steps of the iterative solution. Nevertheless, the asymptotic result in

1For instance, the Newton-Raphson, which is based on the second order Taylor’s series approximation,
uses the hessian computed at each round.
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equation (15) suggests that in the end, it is unlikely that the ill-effects of collinearity can
be manipulated in a material way by using another estimator of the asymptotic covariance
matrix.

4.2 Maximum Likelihood

Maximum likelihood estimation can be approached in a similar fashion. Instead of minimiz-
ing the sum-of-squared errors function the goal is to choose parameter values that maximize
the log-likelhihood function, `(β,X). The algorithms use either first derivatives of `, the
second, or both. As in the Gauss-Newton algorithm for nonlinear least squares, each of the
algorithms involves inversion of the hessian (e.g., Newton-Raphson), its negative expectation
(the negative information matrix used in the method-of-scoring), or a cross-products matrix
of partial first derivatives (e.g. the method of Berndt, Hall, Hall, and Hausman). In any of
these instances, the inverted matrix evaluated at the each round of estimates is instrumental
in solving for the parameter values that maximize the likelihood function. If at any point
in the process it becomes singular or nearly so, estimation fails. If convergence occurs, then
the inverse of the estimated asymptotic covariance matrix can be subjected to conditioning
diagnostics in the same manner as the NLLS estimator.

4.3 Generalized Linear Models

This basic approach has been used in other contexts. Weissfeld and Sereika (1991) explore
the detection of collinearity in the class of generalized linear models (GLM). This broad class
of models includes the linear regression model, binary choice models like logit and probit,
polychotomous choice models, the Poisson regression model, the cox proportional hazard
model, and others (see McCullagh and Nelder, 1989 for discussion). In the generalized linear
models the information matrix associated with the log-likelihood function can be expressed
generally as

I(β) = XTWX (16)

where W is a T × T diagonal weight matrix that often is a function of the unknown pa-
rameters, β, the independent variables, and the responses, y. In this form, Segerstedt and
Nyquist (1992) observe that ill-conditioning in these models can be due to collinearity of
the variables, X, the influence of the weights, W , or both. They suggest a transformation
of the data that, when plotted in the same diagram with the original data, can illuminate
the change in conditioning that occurs due to the weights. Unfortunately, the method is
manageable only in a few dimensions.

In GLM, Weissfeld and Sereika (1991) suggest applying the BKW condition number diag-
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nostics to the the scaled information matrix (−E[H(β)]). Lee and Weissfeld (1996) do the
same for the Cox regression model with time dependent regressors. Although the variance
decompositions can be computed in these instances, their interpretation is not as straightfor-
ward since collinearity can also be due to the way the weights interact with the explanatory
variables.

Lesaffre and Marx (1993) also investigate the problem of ill-conditioning in generalized linear
models and take a slightly different approach. Following Mackinnon and Puterman (1989)
they suggest that only the columns of X be standardized to unit length, forming X1. Then,
conditioning diagnostics are computed on X1ŴX1, where Ŵ is the estimated weight matrix
based on the rescaled data.2 The square root of the ratio of largest to smallest eigenvalue
describes the worst relative precision with which linear combinations of the location parame-
ters can be estimated. Thus, this scaling gives a structural interpretation to the conditioning
diagnostic. One problem with this scaling is that X1ŴX1 could be ill-conditioned because
of the effects of Ŵ which could either cause the algorithm to fail or result in very large
estimated variances for the parameters of the model.

4.4 BKW diagnostics based on covariance

All of the approaches to diagnosing poorly identified models can be subjected to the condition
number, variance decomposition of BKW. Tests for adequate signal-to-noise may also prove
useful, even though the Belsley’s theory relied on the exact normality of the least squares
estimator of the classical normal linear regression model.

Even though the BKW and s/n diagnostic can identify weaknesses of the data or model,
they cannot distinguish problems in the data from problems with the parameters, since
the two interact often in a nonseparable way in the estimator’s covariance. Despite these
problems, we compute condition numbers and perform the BKW decomposition on the
scaled estimated inverse of the variance-covariance matrix. This is convenient in gretl since
the variance-covariance of on estimated model can be retrieved after estimation using the
accessor $vcv. The inverse variance-covariance matrix is scaled so that the principal diagonal
has one in each element.

Suppose an estimator b ∼ (β,Σ−1). Then Σ is the inverse of the estimated covariance matrix
and let si be the ith diagonal element. The matrix S be a k× k diagonal matrix with the si,
i = 1, . . . , k on the diagonal. Then, the inverse covariance is scaled

Σs = S−1/2ΣS−1/2. (17)

2Note, X1ŴX1 is not rescaled. This is not the same as finding the condition number of the scaled
estimated inverse of the information matrix.
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For the least squares estimator, the condition numbers and variance decomposition based
on Σs are the same as those based on the scaled, uncentered regressors in the original
BKW diagnostic. In other words, it has no effect on the BKW table used for diagnostics.
The advantage is that it can be computed almost automatically for any linear or nonlinear
estimator that yields a nonsingular covariance upon convergence. Given that there are
different ways to estimate covariance in nonlinear models, it is possible that some methods
(i.e, outer product of gradients) might be (slightly) better behaved in small samples than
others (inverse information or the negative inverse of the hessian in ML estimation).

Finally, another diagnostic that could be useful is the relative condition number. Gretl
can compute this using the internal function rcond. This function takes a matrix A as an
argument and returns the reciprocal condition number for A with respect to the 1-norm. The
value is computed as the reciprocal of the product, 1-norm of A times 1-norm of A-inverse,
i.e.

rc =
1

‖A‖1‖A−1‖1
(18)

where ‖A‖1 is the maximum of the absolute values of the column sums of A. The result is
a number between 1 and 0, with 1 being perfectly conditioned (orthogonal regressors) and
0 being perfectly ill-conditioned. As a collinearity diagnostic, we would suggest that rc be
computed based on the scaled inverse covariance rather than unscaled version as gretl does
by default using vif.
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5 Examples

In this section, several examples are considered.

5.1 Klein-Goldberger Consumption

The first example provides a benchmark by which we can judge whether the gretl functions
are working properly. The example is contained in Chapter 21 of ITPE II where Judge et al.
(1988) employ the BKW collinearity analysis to the Klein-Goldberger consumption function
model (Judge et al., 1988, Chapter 21).

C = β1 +Wβ2 + Pβ3 + Aβ4 + u (19)

where the regressors include a constant, wage income (W), price level (P), and farm income
(A). The BKW variance decomposition produced using the user written hansl functions

The BKW variance decomposition

cond const W P A

l1 1.000 0.001 0.001 0.000 0.002

l2 6.076 0.042 0.008 0.009 0.112

l3 20.553 0.207 0.654 0.025 0.811

l4 29.255 0.750 0.338 0.966 0.075

and the reciprocal condition number, rc = 9.0552e − 4, which is very small. Note, these
results match those from (Judge et al., 1988, page 873). Based on the BKW analysis the
largest condition number of 29.255 is at the threshold of indicating a strong near linear
dependency and probably deserves some attention. The variance decomposition proportion
is greater than 0.5 for the variable P and the constant. The variation of the data in this
direction is seriously impeding estimation of β3 and the intercept β1.

The signal-to-noise tests reveal that the data are in fact very weak. The BKW diagnostic
indicates this is due to collinearity in estimation of β3 but that the low s/n impedes estimation
of the coefficients for A and P . Collinearity is the problem for β3 and the data are short for
estimation of β4. Choosing γ = 0.9 and testing at the 5% level the t2 s/n statistics are

The t-squared signal-to-noise statistics are:

const W P A

t-squared 0.831 37.207 0.476 0.012
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The output from computation of the critical values, which has to be done using R at this
point is:

The signal-to-noise parameters and critical value are:

gamma alpha J n-k critical

0.900 0.050 1.000 16.000 13.275

The critical value is 13.275 and on the the t2 for W is apparently strong enough. Note that
it is also the only variable that is significantly different from zero. The very large condition
number from the BKW diagnostic (29.255) and the large variance component for P suggests
that this variable is highly collinear with the others. Moderately bad collinearity associated
with the third eigenvalue, which predominately affect the precision of the coefficient for A is
showing signs of being short as well. Its s/n is very low but collinearity is only moderately
severe.

A joint test of the weakness of A and P yields a smaller critical value for the Wald statistic
yields:

Test on Model 1:

Null hypothesis: the regression parameters are zero for the variables

P, A

Test statistic: F(2, 16) = 0.238842, p-value 0.790297

The signal-to-noise parameters and critical value are:

gamma alpha J n-k critical

0.900 0.050 2.000 16.000 10.002

The weak data hypothesis cannot be rejected for γ = 0.9 at 5% since 0.2388 < 10.002.

Gretl’s internal collinearity diagnostic command is vif. The VIF for regressor j is defined
as

VIFj =
1

1−R2
j

(20)

whereR2
j is the coefficient of multiple correlation between regressor j and the other regressors.

The factor has a minimum value of 1.0 when the variable in question is orthogonal to the other
independent variables. Neter et al. (1990) suggest inspecting the largest VIF as a diagnostic
for collinearity; a value greater than 10 is sometimes taken as indicating a problematic degree
of collinearity.

For the Klein-Goldberger model the VIFs are:
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Variance Inflation Factors

Minimum possible value = 1.0

Values > 10.0 may indicate a collinearity problem

W 7.735

P 2.086

A 6.213

By this criterion, the collinearity is bad, but does not cross the threshold of 10 suggested by
Neter et al. (1990). Also, we note that the reciprocal condition number reported by VIF is
based on the unscaled regressor cross products matrix, XTX. Its value is 2.74e-6. Since the
rc is used more as an indicator of the near singularity XTX, which in turn creates problems
for performing matrix inversion, this may make sense. However, as a useful collinearity
diagnostic we wonder whether the columns of the covariance should first be scaled to unit
length. This would at least make inter-model comparisons more useful.

The reciprocal condition number computed for the scaled covariance is 9.05e-4, larger than
the one based on unscaled covariance, but still very near zero.

5.2 Longley

One of the benchmarks used for ill-conditioned regressors is the badly collinear Longley
model of employment. There are only sixteen observations and seven regressors: constant,
GNP deflator, GNP, unemployment, size of the armed forces, population, and year. Gretl
reports a near singularity when the linear model is estimated by ols. The BKW variance
decomposition diagnostics for this model are:

The BKW variance decomposition

cond const prdefl gnp unemp armfrc pop year

l1 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

l2 9.142 0.000 0.000 0.000 0.014 0.092 0.000 0.000

l3 12.256 0.000 0.000 0.000 0.001 0.064 0.000 0.000

l4 25.337 0.000 0.000 0.001 0.065 0.427 0.000 0.000

l5 230.424 0.000 0.457 0.016 0.006 0.115 0.010 0.000

l6 1048.080 0.000 0.505 0.328 0.225 0.000 0.831 0.000

l7 43275.043 1.000 0.038 0.655 0.689 0.302 0.160 1.000

Rounding has caused the variance proportion for year due to the smallest eigenvalue to be 1.
There are three condition numbers greater than 230 and clearly the collinearity situation is
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very bad. Interestingly, armfrc is not showing high collinearity. year is actually orthogonal
to the other variables and hence, not collinear. The other variables are showing signs of
being involved in at least one of the three highly collinear relationships.

The signal-to-noise statistics are:

const prdefl gnp unemp armfrc pop year

t-squared 15.294 0.031 1.144 17.110 23.252 0.051 16.127

The signal-to-noise parameters and critical value are:

gamma alpha J n-k critical

0.900 0.050 1.000 9.000 15.650

For this rather low standard (γ = 0.9 unemployment, armed forces, and year are showing
acceptable s/n despite high collinearity. Population GNP, and price deflator have very weak
s/n which we would attribute to the collinearity of the data.

5.3 Ordered Probit

The third example considers a nonlinear model, ordered probit. The data are from Mroz and
the dependent variable is the number of children less than six years of age (kidsl6) and the
regressors are a constant, mother’s education, mother’s experience, and mother’s age. The
model is rather dumb, but the dependent variable takes integer values 0, 1, 2, and 3, which
serves our purpose. Collinearity in this case is not so much about linear relationships among
the regressors, but the conditioning of the variance covariance matrix that also includes
terms for the estimation of the cutoff points in the ordered probit model.

The results:

Model 2: Ordered Probit, using observations 1–753
Dependent variable: kidsl6

Standard errors based on Hessian
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Coefficient Std. Error z p-value

educ 0.0437362 0.0265277 1.6487 0.0992
exper −0.0282272 0.0101281 −2.7870 0.0053
age −0.102429 0.00984913 −10.3999 0.0000

cut1 −2.91206 0.516607 −5.6369 0.0000
cut2 −1.74208 0.512837 −3.3970 0.0007
cut3 −0.692334 0.547788 −1.2639 0.2063

Mean dependent var 0.237716 S.D. dependent var 0.523959
Log-likelihood −356.2304 Akaike criterion 724.4609
Schwarz criterion 752.2053 Hannan–Quinn 735.1494

Number of cases ‘correctly predicted’ = 610 (81.0 percent)
Likelihood ratio test: χ2(3) = 196.349 [0.0000]

Test for normality of residual –
Null hypothesis: error is normally distributed
Test statistic: χ2(2) = 2.42029
with p-value = 0.298154

The collinearity diagnostics are:3

The BKW variance decomposition

cond educ exper age cut1 cut2 cut3

l1 1.000 0.002 0.022 0.002 0.001 0.000 0.000

l2 1.595 0.000 0.001 0.000 0.001 0.013 0.033

l3 1.974 0.000 0.002 0.000 0.002 0.005 0.110

l4 3.673 0.010 0.963 0.007 0.002 0.002 0.002

l5 10.833 0.505 0.002 0.385 0.000 0.002 0.005

l6 23.627 0.482 0.012 0.605 0.994 0.977 0.850

The second column includes the condition numbers and the last six are the variance decom-
positions for the 3 variables and the 3 cutoff points. Overall, the conditioning is not too bad
since the largest condition number is 23.627, which is below the extreme threshold of 30.
On the other hand, the extremely high proportion of variance of the cutoff points associated
with the smallest eigenvalue suggests how fragile estimation of these parameters might be.

3Notice that there are no column headings since there is not a one-to-one mapping of variable to parameter
in this model. A means of automating this will take some thought... This ‘feature’ also applies to the t2

statistics as well.
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The usefulness of the variance decomposition in this context is speculative and a remedy is
not easily discerned. Since the model is nonlinear, one could not simply eliminate a principal
component associated with the smallest eigenvalue, estimate the model, and perform the
inverse transformation and expect proper results. The insignificance of the third cutoff is
more easily explained by the fact that there are relatively few women in the sample with
three kids younger than six! Also, its value is getting closer to zero, so the signal is becoming
weaker. The other thing to note is that there are no column headings for the BKW table.

Other than the absence of finite sample results, we see no reason why the s/n diagnostics
couldn’t be employed in a nonlinear model like this one. The statistic is based on the
normality of the estimator, which is asymptotic in this instance. The primary problem is in
interpreting the results. For instance, it is not clear what the concept of short data mean
when the underlying “variables” in the nonlinear model are functions of parameters. For
instance, the columns of Z(β) in NLS depend on β and estimates of it an the final round.
The columns of the covariance matrix in the MLE are not linear functions of X; they depend
on parameter values is a way that makes assigning blame for weak data equally difficult,
if not impossible. However, if s/n is weak for relationships that according to the BKW
diagnostics are not highly collinear, we can conclude that the identification problem is due
to low signal (β ≈ 0) or that the implied scores are short in the same sense that data are.
This is speculative and deserves more thought.

Finally, we try our hand at computing the s/n diagnostic on the nonlinear model.

The signal-to-noise statistics are:

educ exper age cut1 cut2 cut3

t-squared 2.718 7.767 108.157 31.775 11.539 1.597

The signal-to-noise parameters and critical value are:

gamma alpha J n-p critical

0.900 0.050 1.000 747.000 10.869

Signal-to-noise is adequate for the age coefficient and the first two cut-offs. Inadequate for
the other parameters. This is despite the fact that experience is significantly different from
zero in the regression. With one fairly high condition number we’d say that there is one
collinear relationship that involves education and age, made worse by the existence of the
cutoff parameters. Surprisingly, of the four variables only education seems to fall victim to
weakness of the data. Experience does not appear to be collinear, but is showing signs of
being short.
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5.4 Linear Instrumental Variables

The final example considered is that of a model with an endogenous regressor estimated
using linear instrumental variables. The model is:

ln(wage) = β1 + educβ2 + experβ3 + ageβ4 + u (21)

Here, the years of schooling, educ, is endogenous. We use mother’s (mothereduc) and father’s
(fathereduc) years of schooling as instruments. First, the model is estimated using OLS.

The BKW variance decomposition

cond const educ exper age

l1 1.000 0.001 0.002 0.013 0.002

l2 4.265 0.007 0.021 0.769 0.002

l3 11.418 0.005 0.507 0.156 0.437

l4 19.668 0.987 0.471 0.063 0.559

The signal-to-noise statistics are:

const educ exper age

t-squared 1.735 59.211 12.613 0.086

The signal-to-noise parameters and critical value are:

gamma alpha J n-k critical

0.900 0.050 1.000 424.000 10.904

Collinearity is bad, but not awful. Signal-to-noise is low for the constant and age, but
adequate for education and experience.

Two-stage least squares estimation is quite different. First, the instruments appear to be
quite strong.

Weak instrument test -

First-stage F-statistic (2, 423) = 55.5516

However, collinearity is induced by using imperfect instruments.

The BKW variance decomposition

cond const educ exper age

l1 1.000 0.000 0.000 0.013 0.002
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l2 4.302 0.003 0.004 0.784 0.003

l3 13.661 0.016 0.072 0.194 0.859

l4 35.625 0.981 0.924 0.009 0.137

The signal-to-noise statistics are:

const educ exper age

t-squared 0.300 4.180 12.569 0.200

The critical value for the γ = .9 5% test is still 10.904. Note that the largest condition number
has nearly doubled in size to 35.6 and education is clearly involved in this near singularity.
The signal-to-noise has become inadequate for education, even when the instruments are
considered strong.

6 Conclusion

We have briefly summarized know results for collinearity diagnostics in linear and nonlinear
regression models. We base our main analysis on the condition number and variance decom-
position analysis suggested by Belsley et al. (1980). By analogy, we extend that analysis
to nonlinear models based on the scaled inverse of the covariance matrix. Although this
introduces some noise into the diagnostics, we find them very similar in magnitude to their
linear model counterparts.

Signal-to-noise statistics are a useful supplement and allow us to identify whether the data
are weak due to collinearity or because they are ”short”. This also seems to translate,
probably better in fact, to the nonlinear environment. The gretl functions written for these
statistics are straightforward to use and relatively easy to interpret. Being based on the
variance covariance matrix, the BKW can be applied to nearly any model desired.

We had to resort to R to compute the noncentral F critical values. This if fiddley in the
sense that it can not be done automatically, requiring hard coding of the locations of reading
and writing of matrices. We can hope that gretl finds her own native functions soon.

Finally, we took a stab at using the diagnostics in an instrumental variables setting. The
results were quite interesting in that collinearity induced by the use of instruments becomes
apparent when compared to the OLS results. We think this deserves further investigation.
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7 Code

Below you will find an example script that can be used as a model for your own diagnostic
purposes. This is follwed by the complete set of code for all of the functions used. The
examples in the preceding sections can be reproduced using the hansl code at the bottom.
These functions have been packaged into a function bkw.gfn.

The function takes two inputs: 1) the estimated variance covariance matrix produced by
estimation and 2) a string consisting of either the variable names (linear model) or a user
defined string that will serve as headings for the columns of the BKW table. The output is
the BKW diagnostics matrix.

7.1 Example Script

open mroz

list xlist = const educ exper age

probit kidsl6 xlist

string vn = "educ exper age cut1 cut2 cut3"

matrix co = $vcv

matrix bb = bkw(co, vn)

In this example we use a nonlinear model to illustrate the manual construction of the string
that populates the column names. The ordered probit has 4 categories, thus in the pa-
rameterization without a constant there are three cutoff points to estimate. In gretl’s pa-
rameterization of the model, there is no constant so the three regressors are named in the
string.

The signal-to-noise diagnostic signal noise simply computes the critical value from the
non-central F and puts all of the relevant information into a table. The computation of the
noncentral critical values for the hypothesis tested is all that is really required. Specify the
degree of evidence you desire (γ) and choose a test size (α) and feed degrees of freedom (J
and n-k).

We have also written a function t2 that computes the signal-to-noise diagnostics for each
parameter with the null being that no signal is present, i.e., this is the standard t-ratio.
It is not really necessary to compute t2 since gretl produces t-ratios for every model it
estimates. The t2 requires the variable names and the coefficients and standard errors from
the estimated model.
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scalar g = .90

scalar a = .05

matrix sn = signal_noise(g,a,1,$df)

t2(vn,$coeff,$stderr)

7.2 The complete set of code for all functions

Below you will find the complete listing of code used in the functions.

clear

set messages off

set echo off

# This creates a string to name rows of BKW matrix

# Input: a scalar that indicates number of eigenvalues

function string lam_names(scalar k)

string lall = null

loop for i=1..k

sprintf l "l%d",i

string ls = "@l "

string lall += ls

endloop

return lall

end function

# This performs the variance decomp of BKW

# Input: L = vector of Eigenvalues based on X’X or covariance

# V = matrix of Eigenvectors

# Note: If using eigenvalues, L, from scaled X, then square them

function matrix bkw_var_decomp(matrix L, matrix V)

scalar k = cols(V)

# Variance Decomposition

matrix u2 = (V.^2)’ .* (1/L ** ones(k,1))

matrix vard = sumr(u2)

matrix p = u2 ./ (vard ** ones(1,k))

matrix p = p’

return p

end function
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# This scales the diagonals of the inverse covariance matrix to unit length

# Input: covariance matrix of estimator

# Output: vector of condition numbers

function matrix scale_cov(matrix vc)

matrix vc = inv(vc)

matrix xs = 1/sqrt(diag(vc))

matrix S=I(cols(vc))

matrix S[diag] = xs

matrix scaled_cov = qform(S,vc)

return scaled_cov

end function

# This computes condition numbers

# Input: matrix of variables, scores, or covariance

# BKW recommend scaling before using this

function matrix cond_num(matrix vc)

matrix lambda = svd(vc)

scalar ll = max(lambda)

matrix condnumber = sqrt(ll./lambda)

matrix rc = rcond(vc)

printf "Relative condition number \n%10.4e\n\n",rc

printf "Condition numbers based on normalized covariance \n%10.0f\n",condnumber

return condnumber

end function

#Assembles the BKW table and prints it to screen

#Inputs: l = matrix of eigenvalues

# p = matrix of eigenvectors

# vn = string to use for column names

function matrix bkw_table(matrix l, matrix p, string vn)

string lnames = lam_names(nelem(l))

string lname = strsub(lnames, ",", " ")

string vname = strsub(vn, ",", " ")

matrix p = l’~p

colnames(p, " cond @vname " )

rownames(p, " @lname ")

printf "\nThe BKW variance decomposition \n%10.3f\n ",p

return p

end function

#Computes the BKW table and outputs it to matrix

#Inputs: co = scaled inverse covariance matrix
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# vn = string to use for column names

function matrix bkw(matrix co, string vn)

matrix co = scale_cov(co)

matrix V U

matrix L = svd(co, &U , &V)

matrix VD = bkw_var_decomp(L, V)

matrix cond_n = cond_num(co)

matrix bkw = bkw_table(cond_n,VD, vn)

return bkw

end function

#This computes the critical value for the s/n test.

# g = gamma (desired degree of evidence

# a = alpha, test size

# J = number of hypotheses, numerator df

# df = denominator degrees of freedom

function matrix signal_noise(scalar g, scalar a, scalar J, scalar df)

matrix parms = g~a~J~df

scalar c = critical(X,J,1-g)

crit=invcdf(ncf,J,df,c,1-a)

matrix xx = parms~crit

colnames(xx,"gamma alpha J n-k critical")

printf "The signal-to-noise parameters and critical value are: \n%12.3f\n", xx

return xx

end function

# This computes t-ratios. Redundant.

# This could be added as a row to BKW table if desired

function void t2(string vn, matrix t, matrix se)

matrix phi_2 = ((t./se).^2)’

vname = strsub(vn, ",", " ")

rownames(phi_2,"t-squared")

colnames(phi_2, " @vname ")

printf "The signal-to-noise statistics are: \n\n%10.3f\n", phi_2

end function

open KLEING.gdt

list xlist = const W P A

ols C xlist

vif

scalar g = .90

scalar a = .05
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matrix sn = signal_noise(g,a,1,$df)

string vn = varname(xlist)

matrix co = $vcv

matrix bb = bkw(co, vn)

t2(varname(xlist),$coeff,$stderr)

matrix sn = signal_noise(g,a,1,$df)

omit P A --test-only

matrix sn = signal_noise(g,a,2,$df)

string vn = varname(xlist)

matrix co = $vcv

matrix bb = bkw(co, vn)

open longley

list xlist = const 2 3 4 5 6 7

ols employ xlist

string vn = varname(xlist)

matrix cc = $vcv

matrix bb = bkw(cc, vn)

t2(vn,$coeff,$stderr)

scalar g = .90

scalar a = .05

matrix sn = signal_noise(g,a,1,$df)

open mroz

list xlist = const educ exper age

probit kidsl6 xlist

v=$coeff

matrix co = $vcv

string vn = "educ exper age cut1 cut2 cut3"

matrix bb = bkw(co, vn)

t2(vn,$coeff,$stderr)

scalar g = .90

scalar a = .05

matrix sn = signal_noise(g,a,1,$df)

open mroz

logs wage

list xlist = const educ exper age
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list zlist = const exper age mothereduc fathereduc

tsls l_wage xlist; zlist

string vn = varname(xlist)

matrix co = $vcv

matrix bb = bkw(co, vn)

t2(vn,$coeff,$stderr)

scalar g = .90

scalar a = .05

matrix sn = signal_noise(g,a,1,$df)

ols l_wage xlist

string vn = varname(xlist)

matrix co = $vcv

matrix bb = bkw(co, vn)

t2(vn,$coeff,$stderr)

scalar g = .90

scalar a = .05

matrix sn = signal_noise(g,a,1,$df)
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