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THE RESTRICTED LEAST SQUARES STEIN-RULE IN GRETL

LEE C. ADKINS

Abstract. The paper documents a Gretl function package that is used for the Restricted

Least Squares (RLS) Stein-rule estimator. Judge and Bock (1981, pp. 240-42) proposed a

family of Stein-rule estimators that dominates the MLE of β in the CNLRM under weighted

quadratic loss. The estimator is a linear combination of the unrestricted and restricted

MLEs, where the degree of shrinkage is controlled using a conventional Wald test of the

implied hypothesis restrictions. The Gretl function computes the positive-part version of

the RLS Stein-rule that allows users to specify the desired linear restrictions on the model

and to select a loss function under which to compute the RLS-Stein rule. In the absence

of specific prior information about parameter values Lindley’s version of the James-Stein

rule is particularly attractive; accordingly, it is offered as a user specified option. The final

version of the paper will also provide options for computing bootstrap standard errors [see

Adkins (1990); Adkins and Hill (1990a)].

A simple Monte Carlo simulation is performed to explore the risk characteristics of the

RLS-Stein rule vs. those of pretest, restricted mle, and unrestricted mle. All of the compu-

tations are preformed in gretl.

1. RLS Stein-rule Estimator

The classical normal linear regression model (CNLRM) is represented by

(1) y = Xβ + e e ∼ N(0, σ2IT )

where y is a T × 1 vector of observable random variables, X is a nonstochastic T × K

matrix of rank K, 3 is a K × 1 vector of unknown parameters, and e is a T × 1 vector of

unobservable normally and independently distributed random variables having zero mean

and finite variance σ2. The ordinary least squares (OLS) and maximum likelihood estimator

of β is b = (X ′X)−1X ′y ∼ N(β, σ2(X ′X)−1), and the minimum variance unbiased estimator

of σ2 is σ̂2 = (y−Xb)′(y−Xb)/(T −K), with (T −K)σ̂2/σ2 ∼ χ2
T−K and independent of b.

Judge and Bock (1981) (pp. 240-42) proposed a family of Stein-rule estimators that domi-

nates the MLE of β in the CNLRM under weighted quadratic loss. The loss associated with
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using an estimator β̂ to estimate a vector β with weight matrix W is:

(2) L(β̂, β,W ) = (β̂ − β)′W (β̂ − β)

For squared error loss W = IK and for mean square error of prediciton loss W = X ′X.

The Judge and Bock estimator is a linear combination of the unrestricted and restricted

MLEs and has the form

(3) δ(b) = (1− c/u)b+ (c/u)b∗

where u = (Rb− r)′(RS−1R′)−1(Rb− r)/Jσ̂2 ∼ FJ,T−K,λ is the conventional F-statistic used

to test the hypothesis restrictions HO: Rβ = r, S = X ′X; R is a known J×K nonstochastic

matrix of rank J ; r is a J × 1 vector of known constants; b∗ = b−S−1R′(RS−1R′)−1(Rb− r)
is the restricted least squares estimator (RLS); λ = (Rβ− r)′(RS−1R′)−1(Rβ− r)/2σ2 is the

noncentrality parameter; and c = a(T −K)/J . The estimator is minimax if the scalar a is

chosen to lie within the interval [0, amax], where

(4) amax = [2/(T −K + 2)]{λ−1L tr[(RS−1R′)−1RS−1WS−1R′]− 2},

and λL is the largest characteristic root of [(RS−1R′)−1RS−1WS−1R′]. The value of the

constant a that minimizes quadratic risk is the interval’s midpoint.

In many circumstances, the usual Stein estimator is dominated by a simple modification

called the positive-part rule. The positive-part rule associated with (3) is denoted

(5) δ(b)+ =

{
b∗, if c > u

δ(b), c ≤ u.

Adkins and Hill (1990b) show that this general family of Stein-rules (3) mentioned in Judge

and Bock, extended by Mittelhammer and Young (1981), and generalized by Mittelhammer

(1984, 1985) is dominated by the positive-part rule, (5) which sets the Stein estimator equal

to the RLS estimator whenever the shrinkage factor (c/u) > 1.

The positive-part rule takes a convex combination of the unrestricted and restricted MLEs;

geometrically, this means that (5) lies between b and b∗. The positive-part rule is intuitively

appealing because it draws, or ”shrinks,” the unrestricted estimates toward, but not past,

the restricted estimates. The usual Stein estimator (3) is less attractive because it changes

the sign of the unrestricted MLEs whenever the value of the test statistic, u, is smaller

than the constant, c. The positive-part Stein rule can be used whenever one has uncertain

nonsample information involving three or more linear parameter restrictions.
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2. gretl Functions

The main function used to estimate a linear model via the RLS Stein-rule is RLSStein. The

function takes five arguments. The first is the series used as the dependent variable, the

second is a list of regressors, third is a J ×K matrix of linear restrictions to impose on the

parameters of the model, fourth is a J × 1 matrix of constants, the next is an integer (0,

1) that selects the loss function. The last two arguments are also integers, the first chooses

whether to print the results and the last selects the number of bootstrap iterations to use

for computation of standard errors.

1 function bundle RLSStein (series y "Dependent Variable",

2 list EXOG "Regressors",

3 matrix R "R for linear hypotheses RB=r",

4 matrix r "r for linear hypotheses",

5 int Loss[0:1:1] "Loss function" {"SEL", "MSEP"} ,

6 int verb[0:1:1] "Verbosity" {"no print","print"} ,

7 int B[100] "Bootstrap Replications")

8 # first thing, drop all obs with missing values anywhere

9 list EVERYTHING = y || EXOG

10 smpl EVERYTHING --no-missing

11

12 bundle rr = Stein_setup(y, EXOG, R, r, Loss, verb, B)

13 scalar err = aw(&rr)

14 scalar err = Stein_estimate(&rr)

15 scalar err = bootStein(&rr)

16 if verb == 1

17 Stein_printout(&rr)

18 endif

19 return rr

20 end function

The contents of the function are private, which means that they require no user input other

than what comes from the RLSStein. The first private function, Stein setup uses the inputs

to initialize the bundle used to save and pass arguments to the remaining functions. It also

estimates the unrestricted and restricted models.

The aw function is a wrapper for two other functions, Wmat and amax. Wmat interprets the

string used to determine the loss function and produces a corresponding weight matrix, W .

The amax function determines the maximum shrinkage allowed amax. The Stein estimate

function computes the RLS Stein-rule and returns more arguments to the bundle and

Stein printout prints the unrestricted, restricted and Stein-rule estimates. At this point,

zeros are reported for Stein-rule standard errors. The last function is bootStein and it
3



computes bootstrap covariance and standard errors using the procedure described in section

3. The conditional statement uses the stored verbosity parameter to control the amount of

printout. This is especially useful for simulations and to limit the amount of output produced

during the bootstrap iterations.

Finally, the function returns a bundle. A bundle is a container for various objects namely,

scalars, series, matrices, strings and bundles. Notice that a bundle cannot contain a list. A

bundle takes the form of a hash table or associative array: each item placed in the bundle is

associated with a key string that can used to retrieve it subsequently. The resulting bundle

includes various matrices, scalars, and strings associated with estimating the model. The

bundle includes the following:
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Bundle Key Description

depvar series: dependent variable

depvarname string: name of the dependent variable

mEXOGnames string: names of the exogenous variables

Loss string: W loss function name

mEXOG matrix: exogenous variables

mW matrix: Weight matrix

unrest matrix: OLS estimates

unrest se matrix: OLS standard errors

Rmat matrix: R in Rβ − r
r matrix: r in Rβ − r
J scalar: number of restrictions

res matrix: RLS estimates

res se matrix: RLS std errors

SRCoeff matrix: δ(b)+ Stein-rule estimates

max eigen scalar: λL the maximum eigenvalue

complex scalar: 1 if any char roots are complex; 0 otherwise

amax scalar: amax
collinear scalar: 1 if amax < 0; 0 otherwise

u scalar: F -statistic for testing Rβ − r
c scalar: c shrinkage constant

shrinkage scalar: c/u the amount of shrinkage

SR se matrix: Bootstrap standard errors for Stein-rule

bootCov matrix: Bootstrap covariance estimate

B scalar: number of bootstrap samples

Sresidual matrix: Stein-rule residuals

N scalar: N Sample size

mk scalar: K number of regressors

t1 scalar: Beginning obs. number

t2 scalar: ending obs. number

verbosity scalar: 0, 1; 0 turns off printing results

The dialog box produced by the GUI is shown in Figure 1. Once can choose SEL or MSEP

for the loss function, and to print or not to print output in verbosity. Selecting 0 in the

bootstrap field suppresses computation of the bootstrap standard errors. This option is

useful in using the function for simulations. Otherwise, the user may choose the number

of boostrap replications to use for computation of standard errors. To save the results in a

bundle, then one may do so in the last field.
5



Figure 1. The RLS Stein-rule dialog box obtained using the GUI

.

The R and r fields are particularly useful for building the necessary restrictions. Clicking on

the plus sign produces the build matrix dialog and users can choose to build a restriction

matrix manually by specifying the desired number of rows (J) and columns (K) and then

typing in the desired coefficients on the parameters. The matrix and build matrix dialogs

are shown in Figure 2

3. Bootstrap

The bootstrap can be used in a variety of ways [see Efron (1982)]. The most common form

of the bootstrap is nonparametric and uses the least squares estimates b to obtain the set of

residuals e = y−Xb; these serve as the estimates of the true disturbances of the model and

are thought to capture its underlying structure.
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Figure 2. The Matrix and Build Matrix dialogs

.

One method of generating semiparametric bootstrap standard errors is based on using the

empirical distribution of the least squares residuals. The least squares residuals are rescaled

using ê∗t = (T/(T − K))1/2êt, t = l, . . . , T , [see Wu (1986) for discussion] and a bootstrap

sample of size T is drawn randomly and with replacement from ê, denoted e∗. Then the

bootstrap sample y∗ = Xb + e∗ is obtained and the bootstrap estimate δ∗ is computed. A

large number, N , of size T random samples are drawn from the empirical distribution ê∗

and the sequences {y∗}N1 and {δ∗}N1 are computed. The sample covariance of this sequence

could then be used to estimate the covariance of the RLS Stein-rule.

Adkins (1992) shows that this method tends to overstate the size of standard errors, at least

for the simpler James-Stein estimator, and suggests ways to reduce this bias. The approach

adopted here is to resample randomly from the RLS Stein-rule residuals eδ = y − Xδ and

generate bootstrap samples using y∗ = Xδ + e∗δ where e∗δ represents a random resample

from the RLS Stein-rule residuals eδ. The sequence {δ∗}N1 are computed and the sample

covariance of this sequence is used to estimate the covariance of the RLS Stein-rule. This

approach is similar in spirit to that taken by Brownstone (1990). This modification can be

justified on theoretical grounds since δ is consistent for β.

It is debateable whether the Stein-rule residuals should be rescaled. In the current version of

the package, they are. The example given below contains only 14 observations and rescaling

residuals increases the estimated standard errors by a substantial amount. The effect as T

increases will diminish.
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4. Example

The example uses data on single family homes in the University City community of San

Diego, in 1990. It is available in the base distribution of gretl as data4-1.gdt.

The basic model to be estimated is:

(6) price = β1 + β2sqft + β3sqft2 + β4bedrms + β5baths + e

The following restrictions are considered: β2 = 360; β3 = 0; β4 = −2; and, β5 = −51.

1 open data4-1

2 series sqft = sqft/1000

3 square sqft bedrms

4 list xlist = const sqft sq_sqft bedrms baths

5 matrix Rmat = zeros(4,1)~I(4)

6 matrix r = { 350 ; -50 ; 0 ; 0}

7

8 bund = RLSStein(price, xlist, Rmat, r, 1, 1, 100)

Estimating the model under squared error loss produces the message:

1 Squared Error Loss

2

3 The data are highly collinear and no shrinkage

4 will occur under the current loss function.

Hence, the RLS Stein estimates are the same as those of OLS, except for the standard errors,

which are based on the bootstrap. The RLS Stein-rule is estimated under mean square error

of prediction loss.

The results from the example script if found below. Notice in line 12 that the chosen weight

matrix for the loss function is reported. Also, there is a note give in lines 14-15 that no

shrinkage is occurring under this loss function due to high collinearity among the regressors.

Hence, the Stein estimates are the same as those for OLS. Finally, in line 50 the computed

values of the shrinkage constants a and c are printed, the amount of shrinkage toward RLS,

and the value of the F -statistic used to control the amount of shrinkage are given.

1 gretl version 1.9.10cvs

2 Current session: 2012-11-17 12:13
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3 ? set echo off

4

5 Read datafile C:\Program Files (x86)\gretl\data\data4-1.gdt

6 periodicity: 1, maxobs: 14

7 observations range: 1-14

8

9 Listing 5 variables:

10 0) const 1) price 2) sqft 3) bedrms 4) baths

11

12 Squared Error Loss

13

14 The data are highly collinear and no shrinkage

15 will occur under the current loss function.

16

17 Stein-Rule Estimation of a linear regression

18 using observations 1-14

19 Dependent Variable y

20 Unrestricted OLS

21

22 coefficient std. error z p-value

23 --------------------------------------------------------

24 const -14.8037 138.026 -0.1073 0.9146

25 sqft 367.990 163.896 2.245 0.0248 **

26 sq_sqft -51.1936 38.6554 -1.324 0.1854

27 bedrms -43.7401 30.9703 -1.412 0.1579

28 baths -3.71536 42.1948 -0.08805 0.9298

29

30 Restricted LS

31

32 coefficient std. error z p-value

33 ---------------------------------------------------------

34 const -153.252 10.2323 -14.98 1.03e-050 ***

35 sqft 350.000 0.000000 NA NA

36 sq_sqft -50.0000 0.000000 NA NA

37 bedrms 0.000000 0.000000 NA NA

38 baths 0.000000 0.000000 NA NA

39

40 Stein-Rule estimates

41 Stein SE

42 const -14.8037 131.8333

43 sqft 367.9898 139.9846

44 sq_sqft -51.1936 33.4086

45 bedrms -43.7401 26.2731

46 baths -3.7154 31.0739

47

48 a=0.0000, c=0.0000, shrinkage is 0.0000 and F=0.8177

Under MSEP loss the Stein estimates are:
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1 Stein-Rule estimates

2 Stein SE

3 const -84.0725 81.3650

4 sqft 358.9891 92.5592

5 sq_sqft -50.5964 21.0457

6 bedrms -21.8559 21.1038

7 baths -1.8565 25.3871

8

9 a=0.3636, c=0.4091, shrinkage is 0.5003 and F=0.8177

In this case, the RLS estimates are approximately midway between the OLS and RLS esti-

mates.

5. Simulation

In this section I will report the results from a small simulation of the estimators considered

above. Their risk characteristics under mean square error of prediction loss will be examined.

The results confirm that the RLS Stein-rule dominates least squares and performs better than

pretest and restricted estimators over large areas of the parameter space.

The experimental design is adopted with minor modification from Adkins (1992).

For the Monte Carlo each of 8 regressors in the X matrix has been standardized to have

zero mean, variance 1, and to be mutually orthogonal. This design is referred to as the

orthonormal regression model (i.e., X ′X = I) and corresponds to the model of the mean

of a multivariate population that is widely studied in statistics. The orthonormal model is

computationally convenient and the results generalize to nonorthogonal models for which it

is a canonical form. The weight matrix W , which appears in the scalar ’a,’ is chosen to be

W = XTX). This choice corresponds to mean square error of prediction loss; ’a’ is chosen

to be the midpoint of the interval (0, amax).

A total of 500 pseudo-random samples of size T=30 were drawn from the N(0, 1) density for

each of the parameter vectors. The design points β = `j, are generated using

(7) ` = R2Tσ2/((1−R2)jT j)1/2

where j is 8×l vector of ones, and population goodness-of-fit R2=[ 0.001, 0.025, 0.05, 0.1, 0.2,

0.3, 0.4, 0.5]. Thus, the risk of the Stein-rule is studied over various degrees of specification

error inherent in the hypothesis restrictions. Larger values of R2 could be considered, but
10
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Figure 3. Relative Risk Profiles of OLS, RLS, Pretest and Stein-rule estimators

the largest here is set at R2 = 0.5 where the Pretest, OLS and Stein-rule estimators’ risks

converge.

The RLS-Stein estimator is studied for several points in the parameter space that lie along

a ray extending from the origin. As R2 increases, the degree of noncentrality increases as

well.

A pretest of the restrictions is tested at the 10% level and computed:

(8) bPT = I(p ≤ 0.1)b+ I(p > 0.1)b∗

where p is the p-value associated with the Wald test of the hypothesis restrictions and I(p)

is the indicator function, taking the value of 1 if expression in parentheses is true and 0

otherwise. The restrictions condisered are

(9) β2 = β3 = . . . = βK = 0

that is, all of the parameters except the first is equal zero. This amounts to J = K − 1

restrictions; In the restricted model this leaves a single parameter to estimate.

The risks of RLS, Pretest (PT) and the RLS Stein-rule (Stein) are plotted in Figure 3. All

risks are measured relative to that of OLS (which theoretically, has a constant risk equal to

K in the orthonormal model). RLS risk increases without limit as error in the hypotheses
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grows. The pretest estimator has risk lower than OLS when the hypotheses are nearly true,

but exceeds that of OLS (though only by a small amount, roughly 26% at its maximum

where R2 = 0.3) as the probability of rejecting the restrictions increases. The RLS-Stien

rule dominates OLS and nearly dominates the pretest.

6. Simulation Code

1 nulldata 30

2 include loss.inp

3 include Steinbundle_BS.inp

4 scalar n=30 # sample size

5 scalar K=8 # number of regressors

6 scalar sig2=1 # variance of y

7 scalar alpha = .1 # level of pretest

8 scalar nmc=500 # number of simulations

9 # Generating regressors

10 matrix x = mrandgen(n,0,1,n,K)

11 # Rescale regressors to unit length

12 matrix dd = 1/sqrt(diag(x’x))

13 matrix xm=x.*(ones(n,1).*dd’)

14 matrix U V

15 matrix d=svd(x, &U, &V)

16 d=ones(1,K)

17 # set the singular values to 1 and reform x, xm now orthonormal

18 matrix xm = (U .* d)

19 # create a list to use in the RLSStein function

20 list xlist = null

21 loop i = 1..K

22 series x_$i = xm[,i]

23 xlist += x_$i

24 endloop

25 # Generation of design points

26 matrix R2={ .001, .025, .05, .1, .2, .3, .4, .5}

27 scalar D = nelem(R2)

28 # Generate quantities used repeatedly in computations

29 matrix xmx=xm’xm

30 matrix j=ones(K,1)

31 # Initialize risk matrix

32 matrix RiskMat=zeros(D,4)

33 # Create Restrictions

34 matrix BigR=zeros(K-1,1)~I(K-1)

35 matrix Lr=zeros(K-1,1)

36 # Main Monte Carlo Loop

37 loop i=1..D

38 # Initialize Loss Matrix
12



39 matrix LossMat=zeros(nmc,4)

40 # Set beta

41 matrix r2 = R2[i]

42 matrix L=sqrt(r2*n*sig2/((1-r2)*j’j))

43 matrix beta = L .* j

44 # Generate samples using beta

45 loop jj = 1..nmc --quiet

46 y=xm*beta+normal(0,sig2)

47 # Convert the matrix y to a series, which RLSStein requires

48 series y_s = y

49 # Estimate RLSStein

50 Stein=RLSStein(y_s, xlist, BigR, Lr, 1, 0, 0 )

51 # retrieve OLS, Stein, u, and RLS from the bundle

52 b=Stein["unrest"]

53 bStein=Stein["SRCoeff"]

54 bRes = Stein["res"]

55 u=Stein["u"]

56 # Use the F-stat to compute PT estimator

57 scalar p=pvalue(F,Stein["J"],n-K,u)

58 matrix bpt = bRes

59 if p < alpha

60 bpt = b

61 endif

62 # Calculate Loss for each estimator

63 LossMat[jj,1]=loss(beta,b,xmx)

64 LossMat[jj,2]=loss(beta,bRes,xmx)

65 LossMat[jj,3]=loss(beta,bpt,xmx)

66 LossMat[jj,4]=loss(beta,bStein,xmx)

67

68 end loop

69 # Average the Losses to obtain Risk

70 matrix risk = meanc(LossMat)

71 # save the risk of OLS to normalize the others

72 matrix rols = risk[1]

73 matrix RiskMat[i,]=risk./rols

74 end loop

75 # Form the matricies for printing and then plot results

76 matrix RR=RiskMat ~ R2’

77 colnames(RR, "OLS RLS PT Stein R2" )

78 RR

79 gnuplot --matrix=RR --output=display --with-lp \

80 { set xlabel ’Specification Error (R2)’; \

81 set ylabel ’Risk Relative to OLS’; }
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