

MONTE CARLO EXPERIMENTS USING GRETL: A PRIMER

Lee C. Adkins
Oklahoma State University

2011
OKSWP1103

Economics Working Paper Series
Department of Economics

OKLAHOMA STATE UNIVERSITY
http://spears.okstate.edu/ecls/

Department of Economics
Oklahoma State
University
Stillwater, Oklahoma

339 BUS, Stillwater, OK 74078, Ph 405-744-5110, Fax 405-744-5180

MONTE CARLO EXPERIMENTS USING GRETL: A PRIMER

LEE C. ADKINS

Abstract. Monte Carlo simulations are a very powerful way to demonstrate the ba-

sic sampling properties of various statistics in econometrics. The free software package

gretl makes these methods accessible to a wide audience of students and practitioners.

In this paper I will discuss the basic principles of Monte Carlo simulations and demon-

strate how easy they are to do in gretl. Examples include linear regression, confidence

intervals, the size and power of t-tests, lagged dependent variable models, heteroskedas-

tic and autocorrelated regression models, instrumental variables estimators, binary choice

models, and nonlinear least squares. Scripts for all examples are available from the website

http://learneconometrics.com/pdf/MCgretl/.

1. Introduction–Using Monte Carlo Simulations in Econometrics

Kennedy (2003, p. 24) defines a Monte Carlo study as “a simulation exercise designed to shed

light on the small-sample properties of competing estimators for a given estimating problem.”

More importantly, it can provide “a thorough understanding of the repeated sample and

sampling distribution concepts, which are crucial to an understanding of econometrics.” The

basic idea is to model the data generation process, generate sets of artificial data from that

process, estimate the parameters of the model using one or more estimators, use summary

statistics or plots to compare or study the performance of the estimators.

Davidson and MacKinnon (2004, p. ix) are enthusiastic proponents of simulation methods

in econometrics. In 2004 they state:

Ten years ago, one could have predicted that [personal computers] would

make the practice of econometrics a lot easier, and of course that is what has

happened. What was less predictable is that the ability to perform simulations

Date: June 5, 2011.

Key words and phrases. Monte Carlo, econometrics, gretl, simulations.
Thanks to Allin Cottrell, Jack Lucchetti, Lars P̊alsson Syll, and James MacKinnon for reading prior

versions of this paper and correcting several errors. Any mistakes that remain are mine alone.
1

http://learneconometrics.com/pdf/MCgretl/

easily and quickly would change many of the directions of econometric theory

as well as econometric practice.

It has also changed the way we teach econometrics to undergraduates and graduate students

(e.g., see Barreto and Howland, 2006; Day, 1987; Judge, 1999). In this paper, the use of

Monte Carlo simulations to learn about the sampling properties of estimators in econometrics

will be discussed and the usefulness of gretl software will be demonstrated using a number

of examples.

Gretl (Cottrell and Lucchetti, 2010) is particularly useful for several reasons. First, it works

well with all major microcomputer operating systems and therefore should be available to

anyone with a computer, not just Microsoft Windows users. Second, it is distributed as a

free download. It is also fast and accurate (see Yalta and Yalta (2007)); from a numerical

standpoint, it is the equal or better of many commercial products. More importantly for our

purposes, it is very easy to use. The amount of programming needed to perform a Monte

Carlo simulation is minimal. It essentially amounts to generating new variables, using built-

in estimators, and saving the statistics that you want to study. Gretl’s very versatile loop

function includes an option that is specifically designed to collect the simulated values of

statistics from a Monte Carlo experiment.

There are other works that take a similar approach. Barreto and Howland (2006) use Mi-

crosoft Excel in their introductory textbook. They provide worksheets that accomplish the

simulations, but there is not information on how they are constructed. Their implementation

is excellent, but different from the one used here. Murray (2006) is also a strong proponent

of using Monte Carlo methods to illustrate sampling. He provides a unique web application

with his book to illustrate important concepts. Again, the application is very useful, but it

doesn’t illustrate how to build a Monte Carlo experiment or allow much ability to vary many

of the parameters of interest in a study of sampling properties. Hill et al. (2008) uses the

results from simulations to illustrate important principles, but actual code to the underlying

experiments is not given.

In the next section, the concept of a fully specified statistical model as laid out by Davidson

and MacKinnon (2004) is summarized and the basic recipe for using it in a Monte Carlo

exercise is presented. In section 3 some of the basics of gretl are discussed. In section 4 the

basics of Monte Carlo simulations will be summarized. Then in section 5 I’ll carefully go

through a complete example of using gretl to study the coverage probability of confidence

intervals centered at the least squares estimator. In subsequent subsections, how to generate

simulated models for some of the estimators used in a first econometrics course is outlined.
2

2. Fully Specified Statistical Model

The first step in a Monte Carlo exercise is to model the data generation process. This requires

what Davidson and MacKinnon (2004) refer to as a fully specified statistical model. A fully

specified parametric model “is one for which it is possible to simulate the dependent

variable once the values of the parameters are known” (Davidson and MacKinnon, 2004, p.

19). Consider a regression function:

(1) E(yt|Ωt) = β1 + β2xt

where yt is the dependent variable, xt the dependent variable, Ωt the current information

set, and β1 and β2 the parameters of interest. The information set Ωt contains xt as well

as other potential explanatory variables that determine the average of yt. The conditional

mean of yt given the information set could represent a linear regression model or a discrete

choice model. However, equation (1) is not complete; it requires some description of how

the unobserved or excluded factors affect yt|Ωt.

To complete the the specification one needs to specify an “unambiguous recipe” for simulating

the model on a computer (Davidson and MacKinnon, 2004, p. 17). This means that a specific

probability distribution for the unobserved components of the model must be chosen and

a pseudo-random number generator used to generate samples of the desired size. Again

following Davidson and MacKinnon (2004) the recipe is:

• Set the sample size, n

• Choose the parameter values β1 and β2 for the deterministic conditional mean func-

tion (1)

• Obtain n successive values xt, t = 1, 2, . . . , n for the explanatory variable. You can

use real data or generate them yourself.

• Compute β1 + β2xt for each observation.

• Choose a probability distribution for the error terms and choose any parameters that

it may require (e.g., the normal requires the variance, σ2)

• Use a pseudo-random number generator to get the n successive and mutually inde-

pendent values of the errors, ut.

• Add these to your computed values of β1 + β2xt to get yt for each observation.

• Estimate the model using the random sample of y, the given values of x, and the

desired estimator

• Save the statistics of interest

• Repeat this a large number of times

• Print out the summary statistics from the preceding step
3

In the last step it is common to evaluate the mean of the sampling distribution, bias, variance,

and the mean square error. (Kennedy, 2003, pp. 26-27) gives explicit formulae for these, but

as you shall see shortly, they are not needed with gretl .

3. Gretl Basics

Gretl is an acronym for Gnu Regression, Econometrics and Time-series Library. It is a

software package for doing econometrics that is easy to use and reasonably powerful. Gretl

is distributed as free software that can be downloaded from http://gretl.sourceforge.

net and installed on your personal computer. Unlike software sold by commercial vendors

(SAS, Eviews, Shazam to name a few) you can redistribute and/or modify gretl under

the terms of the GNU General Public License (GPL) as published by the Free Software

Foundation. Baiocchi and Distaso (2003), Mixon and Smith (2006), and Rosenblad (2008)

provide interesting observations on using gretl to teach basic econometrics. Also, Adkins

(2010) has written a free textbook that contains more examples of how gretl can be used in

the classroom.

Gretl comes with many sample data files and provides access to a database server that

houses many useful macro and microeconomic data sets.

Gretl can be used to compute least-squares, weighted least squares, nonlinear least squares,

instrumental variables least squares and LIML, logit, probit, tobit, GMM, and a number of

time series estimators. The list of procedures available in gretl continues to grow thanks to

tireless efforts of its primary programmers Allin Cottrell and Jack Lucchetti (Cottrell and

Lucchetti, 2010). Gretl uses a separate Gnu program called gnuplot to generate graphs

and is capable of generating output in LaTeX format (see Racine, 2006). As of this writing

gretl is in version 1.9.0 and is actively under development.

For reference below, the main gretl window appears in Figure ??. At the top is the menu

bar, which includes options for File, Tools, Data, View, Add, Sample, Variable, Model, and

Help. At the bottom of the main window is a row of icons; this is referred to as the toolbar.

Some of the functions of the toolbar are shown in Figure 2 and are discussed below.

3.1. Ways to Work in Gretl. There are several different ways to work in gretl. One

can use the program through its built in graphical user interface (GUI) where gretl collects

input from the user through dialogs boxes, delivered by mouse clicks and a few keystrokes,

to generate computer code that is executed in the background. The output is opened in
4

a new window that gives additional access to various graphs, tests, analysis and means of

storing the results. Commands executed through the GUI are saved in the command log,

which can be accessed for later review by clicking on Tools>Command log on the menu bar.

The two other ways of working in gretl are better suited for Monte Carlo analysis, though

the GUI can be useful for finding commands and using the documentation. These methods

are: the console or command line and scripts.

3.1.1. Gretl’s Console and Command Line Interface. Gretl offers two ways to issue com-

mands directly, bypassing the pull-down menus and dialog boxes. In one mode a separate

console window is opened where single line gretl commands can be given with the output

returned to the console window.

There is also command line version of gretl that skips windows and dialogs altogether. The

command line version is launched by executing gretlcli in a command window. In MS

Windows, click Start>Run and browse for the directory that contains gretl. To carry out a

substantial Monte Carlo analysis with many thousands of repetitions, memory capacity and

processing time may be an issue. To minimize the use of computer resources, run the script

using gretlcli, with output redirected to a file.1

3.1.2. Scripts. Gretl commands can be collected and put into a file that can be executed at

once and saved to be used again. Gretl refers to these collections of code as a script. Even

though you can run scripts from the command line or the console, the script window is the

easiest way used to do Monte Carlo simulations in gretl. Start by opening a new command

script from the file menu. The command File>Script files>New script from the pull-

down menu opens the command script editor shown in Figure 1. Type the commands you

want to execute in the box using one line for each command. Notice that in the first line

of the script, "H:\Program Files\gretl\data\misc\mroz87.gdt", the complete file and

path name are enclosed in double quotes, " ". This is necessary because the Program

Files directory in the pathname includes a space. If you have gretl installed in a location

that does not include a space, then these can be omitted.

1The syntax for which is gretlcli -b scriptfile > outputfile. The argument scriptfile refers to

the ascii text file that contains your script; and, only the output file requires redirection (>). Dont forget the

-b (batch) switch, otherwise the program will wait for user input after executing the script. (see Cottrell

and Lucchetti, 2010, ch. 31).
5

Figure 1. The Command Script editor is used to collect a series of commands

into what gretl calls a script. The script can be executed as a block, saved,

and rerun at a later time.

For a very long command that exceeds one line, use the backslash (\) as a continuation

command. Then, to save the file, use the “save” button at the top of the box (third one

from the left). If this is a new file, you’ll be prompted to provide a name for it.

In the first line of the figure shown, the mroz87.gdt gretl data file is opened. The genr

commands are used to take the logarithm of the variable WW, and the ols command discussed

in section 5 is used to estimate a simple linear regression model that has l WW as its dependent

variable and KL6, K618, HW, AX, and WE as the independent variables. Note, the model also

includes constant. Executing this script will open another window that contains the output

where further analysis can be done. To run the program, click the mouse on the “gear”

button (6th from the left in Figure 1).

A new script file can also be opened from the toolbar by mouse clicking on the “new script”

button–second from left and looks like a pad of paper–or by using the keyboard command,

Ctrl+N.2

One of the handy features of the command script window is how the help function operates.

At the top of the window there is an icon that looks like a lifesaver. Click on the help button

and the cursor changes into a question mark. Move the question mark over the command

you want help with and click. This will either produce an error message or take you to the

topic from the command reference.

Although scripts will be the main way to program and run simulations in gretl, the console

and the pull-down menus also have their uses. As will be seen shortly, various statistics

produced in the simulation can be saved to gretl data sets. Once the simulation finishes,

one can open these and subject the statistics to further analysis, either from the console of

2“Ctrl+N” means press the “Ctrl” key and, while holding it down, press “N”.
6

by using the dialog boxes that open when commands are chosen from the pull-down menus.

A few examples will be given in later sections of the paper.

3.2. Common Conventions. Monte Carlo simulations require a series of commands that

are best executed from gretl scripts; basically you write a simple programs in its entirety,

store them in a file, and then execute all of the commands in a single batch. In this paper,

scripts for all of the exercises are given but only a few snippets of output are included. Since

the experimental results depend on how the models are parameterized, its best to use the

scripts to generate your own output for the conditions you want to study. Also, in the few

instances when the pull-down menus are employed the convention used will be to refer to

menu items as A>B>C which indicates that you are to click on option A on the menu bar, then

select B from the pull-down menu and further select option C from B’s pull-down menu. All

of this is fairly standard practice, but if you don’t know what this means, ask your instructor

now.

An important fact to keep in mind when using gretl is that its language is case sensitive.

This means that lower case and capital letters have different meanings in gretl. The practical

implication of this is that you need to be very careful when using the language. Since gretl

considers x to be different from X, it is easy to make programming errors. If gretl gives you

a programming error statement that you can’t quite decipher, make sure that the variable

or command you are using is in the proper case.

Nearly anything that can be done with the pull-down menus can also be done through the

console. The command reference can be accessed from the toolbar by clicking the button

that looks like a lifesaver. It’s the fourth one from the right hand side of the toolbar (Figure

2):

Figure 2. The Toolbar appears at the bottom of the main gretl window.

7

3.3. Importing Data. Obtaining data in econometrics and getting it into a format that

can be used by software can be challenging. There are dozens of different pieces of software

and many use proprietary data formats that make transferring data between applications

difficult. Most textbook authors provide data in several formats for your convenience. Gretl

is able to read Stata files directly. Simply drag a Stata data set onto the main gretl window

and it will open. From the menu bar click (File>Open data>Import) to read data from

EViews, SAS, SPSS, various spreadsheets, Octave, Gnumeric, and text. Gretl is also web

aware and you can download actual economic data from many sources including Penn World

tables, the St. Louis Fed, Bureau of Economics Analysis, and Standard and Poors. Click on

File>Databases>On database server you will be taken to a web site (provided your com-

puter is connected to the internet) that these and other high quality data sets. In addition,

data sets (and in some cases replication scripts) are available for several popular econometrics

textbooks (see http://gretl.sourceforge.net/gretl_data.html for details).

4. Monte Carlo Basics

The main programming tool used to run Monte Carlo experiments is gretl’s flexible loop

function. The syntax for it is:

1 loop control-expression [--progressive | --verbose | --quiet]

2 loop body

3 endloop

The loop is initiated with the command loop. This is followed by the control-expression,

which essentially instructs the loop how to perform. This is followed by several options, the

most important of which for our purposes is --progressive.

There are actually five forms of control-expression that are available and these are explained

in section 9.2 of the Gretl Users Guide (see Cottrell and Lucchetti, 2010). In the examples

that follow, only two of these are used. In most of the examples that follow, the control-

expression is simply a number indicating how may Monte Carlo samples to take (NMC). This

is referred to as a count loop.

By default, the genr command operates quietly in the context of a loop (without printing

information on the variable generated). To force the printing of feedback from genr you may

specify the --verbose option to loop. This can be helpful when debugging. The --quiet

option suppresses the usual printout of the number of iterations performed, which may be

desirable when loops are nested. The --progressive option to loop modifies the behavior
8

http://gretl.sourceforge.net/gretl_data.html

of the commands print and store, and certain estimation commands, in a manner that may

be useful with Monte Carlo analysis.

When the --progressive option is used the results from each individual iteration of the

estimator are not printed. Instead, after the loop is completed you get a printout of (a) the

mean value of each estimated coefficient across all the repetitions, (b) the standard deviation

of those coefficient estimates, (c) the mean value of the estimated standard error for each

coefficient, and (d) the standard deviation of the estimated standard errors. This makes

sense only if there is some random input at each step.

Each simulation follows a similar recipe. The basic structure is:

Basic Recipe with the loop code
1 # open a data set to use as a basis for the simulation

2 or

3 # create values of the regressors using random numbers

4 # set a seed to get same results each time you run this

5 # Set the values of the parameters

6 # Initialize data that may need starting

7 values in the loop (occasionally necessary)

8 # start the loop, indicating the desired number of samples (NMC).

9 # use --progressive to do MC simulations (necessary)

10 # use --quiet to suppress printing the iterations (highly recommended)

11 loop NMC --progressive --quiet

12 # generate random errors

13 # generate conditional mean, y

14 # estimate the model

15 # compute and save the desired statistics

16 # print results

17 # store results in a data set for future analysis if desired

18 endloop

Also, when the print command is used, the progressive option suppresses the printing

results of the estimation at each round the loop. Instead, when the loop is terminated you

get a printout of the mean and standard deviation of the variable, across the repetitions

of the loop. This mode is intended for use with variables that have a scalar value at each

iteration, for example the error sum of squares from a regression. Data series cannot be

printed in this way.

The store command writes out the values of the specified scalars, from each time round the

loop, to a specified file. Thus it keeps a complete record of their values across the iterations.

For example, coefficient estimates could be saved in this way so as to permit subsequent
9

examination of their frequency distribution. Only one such store can be used in a given

loop.

Once the samples of your statistics from the Monte Carlo experiments have been obtained,

what to do with them? For instance how can one judge whether an estimator is biased? The

simple answer is to use more statistics. The Monte Carlo mean, x̄, for a statistic should be

approximately normally distributed, e.g., x̄
a∼ N(µ, σ2/n). Therefore z =

√
NMC(x̄ − µ)/σ̂

should be a standard normal. The statistic σ̂ is simply the standard deviation that gretl

prints for you; now, compare that to the desired critical value from the standard normal.

Finally, there is a trick one can use to significantly improve the accuracy of some studies:

use antithetic draws from the desired distribution. Antithetic draws are perfectly negatively

correlated with one another. For a symmetric distribution like the normal, one simply draws

a set of normal errors, u, and use these once to generate y. Then, reverse their signs, and

use them again to generate another sample of y. The residuals in successive odd and even

draws, u and -u, will be perfectly negatively correlated. See Train (2003, pp. 219-221) for

an excellent discussion of antithetic variates.

5. Examples

In this section, a series of examples is given. Each example illustrates important features of

model specification and estimation. The first example is based on the classical normal linear

regression model. Four hundred (NMC=400) samples based on Engel’s food expenditure and

income data included with gretl are generated. The slope and intercept parameters with

each simulated data set are computed using least squares, and then 95% confidence intervals

are constructed. The number of times the actual values of the parameters falls within

the interval is counted. We expect that approximately 95% will fall within the computed

intervals. What becomes clear is the outcome from any single sample is a poor indicator

of the true value of the parameters. Keep this in mind whenever you estimate a model

with what is invariably only one sample or instance of the true (but always unknown) data

generation process.

Subsequent examples are given, though with less explanation. These include estimating

a lagged dependent variable model using least squares (which is biased but consistent).

Autocorrelated errors are then added, making OLS inconsistent. A Breusch-Godfrey test to

detect first order autocorrelation is simulated and can be studied for both size and power.

Heteroskedasticity Autocorrelation Consistent (HAC) standard errors are compared to the

inconsistent least squares standard errors in a separate example.
10

Issues associated with heteroskedastic models are studied as well. The simple simulation

shows that least squares standard errors are estimated consistently using the usual formula

when the heteroskedasticity is unrelated to the model’s regressors. The final three examples

demonstrate the versatility of the exercises. An instrumental variables example is used to

study the error-in-variables problem, instrument strength, and other issues associated with

this estimator. Next, a binary choice example is studied. Finally, a example is given for a

procedure that involves a block of commands–nonlinear least squares.

Although the errors in each of the examples are generated from the normal distribution,

gretl offers other choices. These include uniform, Student’s t, Chi-square, Snedecor’s F,

Gamma, Binomial, Poisson and Weibull.

5.1. Classical Normal Linear Regression and Confidence Intervals. We start with

the linear model:

(2) ln(yt) = β1 + β2 ln(xt) + ut

where yt is total food expenditure for the given time period and xt is income, both of which

are measured in Belgian francs. Let β1 = .5 and β2 = .5 and assume that the error, ut iid

N(0, 1).

The model’s errors take into account the fact that food expenditures are sure to vary for

reasons other than differences in family income. Some families are larger than others, tastes

and preferences differ, and some may travel more often or farther making food consumption

more costly. For whatever reasons, it is impossible for us to know beforehand exactly how

much any household will spend on food, even if we know how much income it earns. All of

this uncertainty is captured by the error term in the model.

The computer is used to generate sequences of random normals to represent these unknown

errors. Distributions other than the normal could be used to explore the effect on coverage

probabilities of the intervals when this vital assumption is violated by the data. Also, it must

be said that computer generated sequences of random numbers are not actually random in

the true sense of the word; they can be replicated exactly if you know the mathematical

formula used to generate them and the ‘key’ that initiates the sequence. This key is referred

to as a seed. In most cases, these numbers behave as if they randomly generated by a

physical process.

A total of 400 samples of size 235 are created using the fully specified parametric model by

appending the generated errors to the parameterized value of the regression. The model is

estimated by least squares for each sample and the summary statistics are used to determine
11

whether least squares is biased and whether 1− α confidence intervals centered at the least

squares estimator contain the known values of the parameters the desired proportion of the

time.

The (1− α) confidence interval is

(3) P [b2 − tcse(b2) ≤ β2 ≤ b2 + tcse(b2)] = 1− α

where b2 is the least squares estimator of β2 and se(b2) is its estimator of standard error.

The constant tc is the α/2 critical value from the t-distribution and α is the total desired

probability associated with the “rejection” area (the area outside of the confidence interval).

The complete script is found in section 6 below. In what follows, the components of it will

be discussed. First, open the script window in gretl by clicking on the open script button

on the toolbar shown in Figure 2. The first line of your script opens the data set

Performance of Confidence Intervals
1 open engel.gdt

When writing a program, it is always a good idea to add comments. Gretl will ignore

anything to the right of #, making it perfect for adding comments. In line 2 of the completed

script (Figure 6), I suggest setting a seed for the random number generator. Line 3 uses set

seed 3213799 to initialize the stream of pseudo-random normals that will be called later.

The next section, lines 6-9, set the values of the parameters used in the Monte Carlo simu-

lation. Once the simulation is up and working to your satisfaction, these can be changed to

study the effect on the estimators.

In Monte Carlo experiments loops are used to estimate a model using many different samples

that the experimenter generates and to collect the results. As discussed in Section 4, the

loop construct in gretl should begin with the command loop NMC --progressive --quiet

and ends with endloop. NMC in this case is the desired number of Monte Carlo samples. The

option --progressive is a command that invokes special behavior for certain commands,

namely, print, store and simple estimation commands. This option will work with any

of the single equation estimators in gretl , but not with any that use blocks of code (e.g.,

nls, gmm, mle). For these types of procedures, a little more programming will be required

to simulate samples and collect results.

To reproduce the results below, the sequence of random numbers is initiated using a key,

called the seed, with the command set seed 3213799. Basically, this ensures that the

stream of pseudo random numbers will start at the same place each time you run your
12

program. Try changing the value of the seed (3213799) or the number of Monte Carlo

iterations (400) to see how your results are affected.

Within the body of the loop, gretl is told how to generate each sample and then what to

do with that sample. The data generation is accomplished here as

Performance of Confidence Intervals continued
11 # Take the natural log of income to use as x

12 genr x = log(income)

Then, start the loop with the progressive and quiet options, generate errors and samples of

the dependent variable:

Performance of Confidence Intervals continued
17 loop 400 --progressive --quiet

18 # generate normal errors

19 genr u = normal(0,1)

20 # generate y

21 genr y = constant + slope*x + u

The genr command is used to generate new variables. In the first instance the natural

logarithm of income is generated and the second u is created as a standard normal random

variable. The gretl command normal(0,1) produces a computer generated standard normal

random variable. The first argument is the desired mean (0) and the second is the standard

error (1). The final instance of genr adds this random element to the systematic portion of

the model to generate a new sample for food expenditures (using the known values of income

in x).

Next, the model is estimated using least squares. Then, the coefficients are stored internally

in variables named b1 and b2. The genr command provides a means of retrieving various

values calculated by the program in the course of estimating models or testing hypotheses.

The variables that can be retrieved in this way are listed in the Gretl Command Reference,

but include the coefficients from the preceding regression and the standard errors. With

no arguments, $coeff returns a column vector containing the estimated coefficients for the

last model. With the optional string argument it returns a scalar, namely the estimated

parameter associated with the variable named x. The estimated constant is referred to as

const. The $stderr works likewise, holding the estimated standard error.

Performance of Confidence Intervals continued
22 # run the regression

23 ols y const x

24 save the estimated coefficients

25 genr b1 = $coeff(const)
13

26 genr b2 = $coeff(x)

27 # save the estimated standard errors

28 genr s1 = $stderr(const)

29 genr s2 = $stderr(x)

It is important to know how precise your knowledge of the parameters is after sampling. One

way of doing this is to look at the least squares parameter estimate along with a measure of

its precision, i.e., its estimated standard error.

The confidence interval serves a similar purpose, though it is much more straightforward to

interpret because it gives you upper and lower bounds between which the unknown parameter

will fall with a given frequency.

In gretl you can obtain confidence intervals either through a dialog or by manually building

them using saved regression results. In the ‘manual’ method I will use the genr command

to generate upper and lower bounds based on regression results that are saved in gretl’s

memory, letting gretl do the arithmetic.

The critical value tc can be obtained from a statistical table, the Tools>Statistical tables

dialog contained in the program, or using the gretl command critical. The critical

command is quite versatile. It can be used to obtain critical values from the standard

normal, Student’s t, Chi square, Snedecor’s F, or the Binomial. In this case the t($df) is

used, where $df returns the degrees of freedom of the last model estimated by gretl.

Performance of Confidence Intervals continued
30 # generate the lower and upper bounds for the confidence interval

31 genr c1L = b1 - critical(t,$df,alpha)*s1

32 genr c1R = b1 + critical(t,$df,alpha)*s1

33 genr c2L = b2 - critical(t,$df,alpha)*s2

34 genr c2R = b2 + critical(t,$df,alpha)*s2

35 # count the number of instances when coefficient is inside interval

36 genr p1 = (constant>c1L && constant<c1R)

37 genr p2 = (slope>c2L && slope<c2R)

The last two lines use logical operators that equal 1 if the statement in parentheses is true

and 0 otherwise.3 The average of these measures the proportion of the intervals that contain

the actual values of the slope and intercept.

3&& is the logical “AND” and || is the logical “OR”.
14

Finally, several of the computed variables are stored to a data set cicoeff.gdt. Once the

simulation finishes, the data set can be opened and other computations can be made or

graphs constructed using the results.

After executing the script, gretl prints out some summary statistics to the screen. These

appear below in Figure 3. Note that the average value of the intercept is about 0.448 and

Figure 3. The summary results from 400 random samples of the Monte Carlo experiment.

OLS estimates using the 235 observations 1-235

Statistics for 400 repetitions

Dependent variable: y

mean of std. dev. of mean of std. dev. of

estimated estimated estimated estimated

Variable coefficients coefficients std. errors std. errors

const 0.448355 0.935386 1.01143 0.0488781

x 0.507090 0.136915 0.148732 0.00718759

Statistics for 400 repetitions

Variable mean std. dev.

p1 0.960000 0.195959

p2 0.957500 0.201727

store: using filename H:\Documents and Settings\My Documents\gretl\cicoeff.gdt

Data written OK.

he average value of the slope is 0.507, both of these are reasonably close to the true values

set in lines 6 and 7. If the experiments were repeated with larger numbers of Monte Carlo

iterations, one will find that these averages get closer to the values of the parameters used

to generate the data. This is what it means to be unbiased. Unbiasedness only has meaning

within the context of repeated sampling. In the experiment, many samples are generated

and averaged results over those samples to get closer to the true values, both as sample size

and as the number of Monte Carlo samples increases. In actual practice, one does not have

this luxury; there is only one sample of a given size and the proximity of the estimates to

the true values of the parameters is always unknown.

The bias of the estimator can be evaluated using z =
√

NMC(x̄− µ)/σ̂ which in this case of

p1 is
√

400(.96 − .95)/0.195959 = 1.02. This is less than the 5% two-sided critical value of

1.96 so we cannot reject the hypothesis that the coverage rate of the confidence interval is

equal to its nominal value. Increasing the number of Monte Carlo samples to 4000 produced
15

z =
√

4000(0.9495 − .95)/0.218974 = −0.144413; this shows that increasing the number of

samples increases the precision of the Monte Carlo results.

After executing the script, open the cicoeff.gdt data file that gretl has created and view

the data. From the menu bar this is done using File>Open data>user file and selecting

coeff.gdt from the list of available data sets. From the example this yields the output in

Figure 4. Notice that even though the actual value of β1 = 0.5 there is considerable variation

Figure 4. The results from the first 20 sets of estimates from the 400 random

samples of the Monte Carlo experiment.

b1 b2

1 -0.751753 0.6875541

2 0.358194 0.5348383

3 2.902894 0.1340339

4 1.279589 0.3897894

5 -0.561178 0.6502060

6 -0.310848 0.6191087

7 0.680899 0.4656558

8 1.278022 0.3884723

9 0.279857 0.5174504

10 -0.744204 0.6741758

11 -0.246119 0.6114379

12 -1.162340 0.7302507

13 1.086522 0.4145859

14 1.214361 0.3938145

15 -0.047051 0.5941038

16 -0.651301 0.6641363

17 0.284105 0.5407113

18 -0.385047 0.6177857

19 0.145503 0.5452904

20 -1.867144 0.8470560

in the estimates. In sample 3 it was estimated to be 2.903 and in sample 20 it was -1.867.

Likewise, β2 also varies around its true value of 0.5. Notice that for any given sample, an

estimate is never equal to the true value of the parameter.

The saved results can be analyzed statistically or visualized graphically. Opening a console

window and typing summary at the prompt will produce summary statistics for all of the

variables. To plot a frequency distribution and test against a normal, type

freq b1 --normal

16

to produce Figure 5. Notice in Figure 5 that the p-value for the test of normality of the least

squares estimator is .71, well above any reasonable significance level.

The performance of the Monte Carlo can be improved by using antithetic variates to generate

the samples.4 To do that replace lines 17-19 with

Generating Antithetic Normal Samples
17 loop i=1..400 --progressive --quiet

18 # generate antithetic normal errors

19 if i%2 != 0

20 series u = normal(0,sigma)

21 else

22 series u = -u

23 endif

First, notice that a new loop control condition is used. The command loop i=1..400,

referred to as the index loop, replaces the simpler count loop loop 400. This structure sets

a counter called i that will loop from the first number after the = sign to the number listed

4Antithetic variates should be used with care as they are not always helpful. For instance they should

not be used to study the properties of variance estimators. See Davidson and MacKinnon (1992).

Figure 5. Using the command freq b1 --normal yields this histogram with

a normal pdf superimposed.

17

Figure 6.

Performance of Confidence Intervals
1 open engel.gdt

2 # set a seed to get same results each time this runs

3 set seed 3213799

4

5 # Set the values of the parameters

6 scalar constant = .5

7 scalar slope = .5

8 scalar sigma = 1

9 scalar alpha = .025 # (size of one tail of a 2 sided CI)

10

11 # Take the natural log of income to use as x

12 genr x = log(income)

13

14 # start the loop, indicating the desired number of samples.

15 # --progressive is a special command for doing MC simulations (use if possible)

16 # --quiet tells gretl not to print all the iterations (highly recommended)

17 loop 400 --progressive --quiet

18 # generate normal errors

19 genr u = normal(0,sigma)

20 # generate y

21 genr y = constant + slope*x + u

22 # run the regression

23 ols y const x

24 # save the estimated coefficients

25 genr b1 = $coeff(const)

26 genr b2 = $coeff(x)

27 # save the estimated standard errors

28 genr s1 = $stderr(const)

29 genr s2 = $stderr(x)

30 # generate the lower and upper bounds for the confidence interval

31 genr c1L = b1 - critical(t,$df,alpha)*s1

32 genr c1R = b1 + critical(t,$df,alpha)*s1

33 genr c2L = b2 - critical(t,$df,alpha)*s2

34 genr c2R = b2 + critical(t,$df,alpha)*s2

35 # proportion of instances when coefficient is inside interval

36 genr p1 = (constant>c1L && constant<c1R)

37 genr p2 = (slope>c2L && slope<c2R)

38 # print the results

39 print p1 p2

40 # store the results in a data set for future analysis is desired

41 store cicoeff.gdt b1 b2 s1 s2 c1L c1R c2L c2R

42 endloop

18

after the two periods, in this case 400. So, i=1 for the first sample in the loop and increases

by 1 with each iteration. This variable is used in line 19 along with the modulus operator

(%) to determine whether the experiment is on an odd or even number. The statement i%2

!= 0 divides i by 2 and checks to see whether the remainder is equal to zero or not. If not,

a draw from the normal is made in line 20. If it is, then line 20 is skipped and line 22 is

executed, which uses the negative values of u in the previous iteration of the Monte Carlo.

The results of the first script using antithetic draws appear in Figure 7 below.

Figure 7. The summary results from 400 random samples of the Monte Carlo

experiment using antithetic variates.

OLS estimates using the 235 observations 1-235

Statistics for 400 repetitions

Dependent variable: y

mean of std. dev. of mean of std. dev. of

estimated estimated estimated estimated

Variable coefficients coefficients std. errors std. errors

const 0.500000 1.01016 1.01981 0.0509399

x 0.500000 0.148667 0.149964 0.00749077

Statistics for 400 repetitions

Variable mean std. dev.

p1 0.950000 0.217945

p2 0.940000 0.237487

store: using filename H:\Documents and Settings\My Documents\gretl\cicoeff.gdt

Data written OK.

Comparing the results from Figure 3 to those in Figure 7 that the use of antithetics makes

it easy to see that least squares is unbiased for the constant and slope.

In the following sections, the basic data generation process for the fully specified model is

given and simple gretl scripts are given to generate experiments based on these. To illustrate

their usefulness, some suggestions are made in how to use them. To keep the scripts as simple

and transparent as possible I have opted to forgo the use of antithetic variates in the examples

that follow.

5.2. Autocorrelation and Lagged Dependent Variables. In a linear regression with

first order autocorrelation among the residuals, least squares is unbiased provided there are

no lags of the dependent variable used as regressors. In this case, least squares is consistent
19

only. Now, if the model contains a lagged dependent variable, least squares is inconsistent

if there is autocorrelation. This is easy to demonstrate using a simple simulation.

Let the model

yt = βxt + δyt−1 + ut t = 1, 2, . . . , N(4)

ut = ρut−1 + et(5)

where ρ is a parameter and et is random error with mean zero and variance, σ2
e . This model

encompasses several possibilities. If δ = 0 the model is the usual AR(1) model. If ρ = 0

then it is a lagged dependent variable model. If both δ = 0 and ρ = 0 the model reduces

to equation 1. Stability requires |ρ| < 1. Also, partial adjustment models lead us to believe

that |δ| < 1 as well. |δ| = 1 suggests that the dependent variable be modeled as a change

(yt − yt−1) rather than a level.

The complete model can be written as

(6) yt = βxt + (δ + ρ)yt−1 − (ρβ)xt−1 − (ρδ)yt−2 + et

There are many questions that can be answered by simulating this ARDL(2,1) model. Among

them, how biased is least squares when the LDV model is autocorrelated? Does this depend

on the degree of autocorrelation? Suppose the model is autocorrelated but δ is small. Is least

squares badly biased? Does HAC work effectively using standard bandwidth computations

in various parameterizations? How powerful is the Breusch-Godfrey test of autocorrelation?

How accurate is the approximation implied by use of the Delta theorem? and so on.

The basic script in gretl is shown in Figure 8. There are a couple of new things in this

script. First, on line 2 the nulldata=100 command is used to open an empty data set and

to set the number of observations, n = 100. Increasing and decreasing this number is used

to explore the properties of the estimators as the sample size changes. Also, new is the

generation of x. Rather than use the regressors from a data set, an artificial set is created

here. Then on lines 17-18 two series are intialized. Basically, they are place holders that

will provide starting values for y and u for the first round of the simulation. In line 25 the

lag operator is used for the first time to get lagged values of ut, using u(-1). The variable

name with -1 in parentheses lags the named variable 1 period. The same is used in line 27

and 29. Notice that in line 29 a new variable for the lagged value of y (i.e., y(-1)) did not

have to be created separately and stored in the data set to use in the estimation command.

This saves a lot of time and clutter in the main gretl window and in the programs.
20

Figure 8.

generating samples from LDV model with Autocorrelation
1 # Set the sample size and save it in n

2 nulldata 100

3 scalar n = $nobs

4

5 # generate n observations on x

6 series x = uniform()

7

8 set seed 3213799 # set a seed to get same results

9

10 # Set the values of the parameters

11 scalar slope = 10

12 scalar sigma = 20

13 scalar delta = .7

14 scalar rho = .9

15

16 # initialize variables u and y

17 series u = normal()

18 series y = normal()

19

20 # start the loop, indicating the desired number of samples.

21 loop 400 --progressive --quiet

22 # generate normal errors

23 series e = normal(0,sigma)

24 # generate autocorrelated errors

25 series u=rho*u(-1)+e

26 # generate sample of y

27 series y = slope*x + delta*y(-1) + u

28 # run the LDV regression

29 ols y const x y(-1)

30 # save the estimated coefficients

31 genr b2_LDV = $coeff(x)

32 genr d = $coeff(y_1)

33 # run the non-LDV regression

34 ols y const x

35 genr b2 = $coeff(x)

36 # run co

37 ar 1; y const x y(-1)

38 genr b2_pw = $coeff(y_1)

39 # run ardl21

40 ols y const x y(-1) x(-1) y(-2)

41 genr b2_ard = $coeff(y_1)

42 endloop

To explore the properties of least squares, one can change the sample size in line 2 (Figure

8), the coefficient on y(-1) in line 13, or the degree of autocorrelation (rho) in line 14. The

standard theoretical results are easy to verify numerically, though with some surprises.
21

5.2.1. Breusch-Godfrey Test. To study the size or power of the Breusch-Godfrey test a few

more statements have to be added. These are shown in Figure 9. Note, that although gretl

can perform this test using modtest 1 --autocorrelation, the modtest commands do not

yet work in the loops. The auxiliary regressions manually must be run manually. This is

a good exercise anyway since it makes the mechanics of the test very clear. Basically, one

estimates the model using ordinary least squares, obtains the residuals, and then estimates

an auxiliary regression of the residuals on the full set of original regressors and p lagged

residuals. The statistic nR2 is distributed as a Chi-square with p degrees of freedom. After

the regressions in lines 29 (or 34, which omits the lagged value of y) save the residuals,

add the auxiliary regression, and save the desired statistic or p-value. Since the p-value

computation is not one of the model parameters, a print statement is necessary to send the

summary statistic to the screen.

Figure 9.
Size and Power of the Breusch-Godfrey Test for AR(1)

ols y const x y(-1)

genr uhat = $uhat

ols uhat const uhat(-1) x y(-1)

genr nr =$trsq

genr pval = (nr>critical(X,1,.05))

print pval

5.2.2. HAC Standard Errors. The experimental design of Sul et al. (2005) to study the

properties of HAC. They propose a model yt = β1 + β2xt + ut, where ut = ρxt−1 + et and

xt = ρxt−1 + vt with β1 = 0 and β2 = 1 and the innovation vector (vt, et) is independently

and identically distributed (i.i.d.) N(0, I2) for n = 100. The script appears below.

Coverage probabilities of HAC and the usual OLS confidence intervals
1 # Set the sample size and save it in n

2 set hac_lag nw1

3 nulldata 300

4 scalar n = $nobs

5 setobs 1 1 --time-series

6

7 # generate n observations on x

8 series x = uniform()

9

10 set seed 3213799 # set a seed to get same results

11

12 # Set the values of the parameters

13 scalar slope = 1

14 scalar sigma = 1
22

15 scalar rho = .880

16 scalar alpha = .05

17

18 # initialize variables u

19 series u = normal()

20

21 # start the loop, indicating the desired number of samples.

22 loop 400 --progressive --quiet

23 # generate normal errors

24 series e = normal(0,sigma)

25 # generate autocorrelated errors and x

26 series u=rho*u(-1)+e

27 series x=rho*x(-1)+normal()

28 # generate sample of y

29 series y = x + u

30 # Estimate the model using OLS, save the slope estimates

31 ols y const x

32 genr b2 = $coeff(x)

33 genr s = $stderr(x)

34 # generate the lower and upper bounds for the confidence interval

35 genr c2L = b2 - critical(t,$df,alpha)*s

36 genr c2R = b2 + critical(t,$df,alpha)*s

37 # count the number of instances when coefficient is inside interval

38 genr p2 = (slope>c2L && slope<c2R)

39 # Repeat for the HAC covariance estimator --robust

40 ols y const x --robust

41 genr sr = $stderr(x)

42 # generate the lower and upper bounds for the confidence interval

43 genr c2Lr = b2 - critical(t,$df,alpha)*sr

44 genr c2Rr = b2 + critical(t,$df,alpha)*sr

45 # count the proportion of instances when coefficient is inside inverval

46 genr p2r = (slope>c2Lr && slope<c2Rr)

47 print p2 p2r

48 endloop

This example is very similar to the LDV model, except the independent variable is lagged in

the DGP (line 27), but this lagged value is omitted from the model estimated in line 29. The

set hac lag nw1 command in line 2 sets the routine used to compute the number of lags to

use in the computation of the HAC standard errors. The data have to be declared as time

series in order for the --robust option in line 40 to compute HAC standard errors. This is

accomplished using setobs 1 1 --time-series in line 5, the numbers 1 1 indicate annual

observations that increment by 1 year. Otherwise, this script combines elements from the

previous ones and will not be discussed further.
23

As Sul et al. (2005) note, this usual variant of HAC does better than least squares unassisted,

but leaves much to be desired. This can be confirmed by running the script.

5.3. Heteroskedasticity. The data generation process is modeled yt = β1+β2xt+ut, where

ut iid N(0, σ2
t) with σ2

t = σ2 exp (γzt), zt = ρxzxt + et, et iid N(0, 1) and β1 = 0 and β2 = 1

and the innovation vector (ut, et) is independently distributed for n = 100.

In this example one can demonstrate the fact that heteroskedasticity is only a ‘problem’ when

the error variances are correlated with the regressors. By setting ρxz = 0 leaves the errors

heteroskedastic, but not with respect to the regressor, x. One can verify that the standard

errors of OLS are essentially correct. As ρxz deviates from zero, the usual least squares

standard errors become inconsistent and the heteroskedastic consistent ones are much closer

to the actual standard errors.

Standard Errors Using HCCME
1 # Set the sample size and save it in n

2 set hc_version 3

3 nulldata 100

4 scalar n = $nobs

5

6 # set a seed to get same results each time you run this

7 set seed 3213799

8

9 # Set the values of the parameters

10 scalar slope = 1

11 scalar sigma = 1

12 scalar rho_xz = .8

13 scalar gam = .4

14

15 # generate n observations on x and a correlated variable z

16 series x = 10*uniform()

17 series z = rho_xz*x + normal(0,sigma)

18

19 # initialize variables u and y

20 series u = normal()

21 series y = normal()

22

23 # start the loop, indicating the desired number of samples.

24 loop 400 --progressive --quiet

25 # generate variances that depend on z

26 genr sig = exp(gam*z)

27 # generate normal errors

28 series u = normal(0,sig)

29 # generate sample of y

30 series y = slope*x + u

31 # run the regression with usual error
24

32 ols y const x

33 # save the estimated coefficients

34 genr b2 = $coeff(x)

35 genr se2 = $stderr(x)

36 # run OLS regression with HC std errors

37 ols y const x --robust

38 genr se2r = $stderr(x)

39 endloop

Gretl has options for the different versions of the Heteroskedasticity Consistent Covariance

Matrix Estimator (HCCME). In this example set hc version 3 scales the least squares

residuals ût/(1 − ht)
2. The parameter ρxz controls the degree of correlation between the

regressor, x, and the variable z that causes heteroskedasticity. If ρxz = 0 then the degree

of heteroskedasticity (controlled by γ) has no effect on estimation of least squares standard

errors. That’s why in practice z does not have to be observed. One can simply use the

variables in x that are correlated with it to estimate the model by feasible GLS. This would

make an interesting extension of this experiment. Whether this is more precise in finite

samples than least squares with HCCME could be studied.

5.4. Instrumental Variables. The statistical model contains five parameters: β, σ, σx,

γ, and ρ. The data generation process is modeled yt = βxt + ut, where ut iid N(0, σ2
t),

xt = γzt + ρut + et, et iid N(0, σ2
x) and the innovation vector (ut, et) is independently

distributed for n = 100. The γ controls the strength of the instrument zt, ρ controls the

amount of correlation between xt and the errors of the model ut, σ
2
x can be used to control

the relative variability of xt and ut as in an error-in-variables problem.

Instrumental Variables
1 # Set the sample size and save it in n

2 nulldata 100

3 scalar n = $nobs

4

5 # generate n observations on x

6 series z = 5*uniform()

7 # set a seed if to get same results each time

8 set seed 3213799

9 # Set the values of the parameters

10 scalar slope = 1 # regression slope

11 scalar sigma = 10 # measurement error in y

12 scalar sigx = .1 # amount of measurement error in x

13 scalar gam = 1 # instrument strength

14 scalar rho = .0 # correlation between error

15 scalar n = $nobs

16

17 # start the loop, indicating the desired number of samples.
25

18 loop 400 --progressive --quiet

19 series u = normal(0,sigma)

20 # generate sample of x and y

21 series x=gam*z+rho*u+normal(0,sigx)

22 series y = slope*x + u

23 # run the ols regression

24 ols y const x

25 # save the estimated coefficients

26 genr b2 = $coeff(x)

27 genr s2 = $stderr(x)

28 # run the tsls regression and save the coefficient and se

29 tsls y const x; const z

30 genr biv2 = $coeff(x)

31 genr siv2 = $stderr(x)

32 # store the results in a data set for future analysis is desired

33 store arcoeff.gdt b2 biv2 s2 siv2

34 print b2 biv2 s2 siv2

35 endloop

5.5. Binary Choice. The statistical model contains only two parameters: β and σ. The

latent variable is modeled y∗t = βxt + ut, where ut iid N(0, σ2
t). The observed indicator

variable yt = 1 if y∗t > 0 and is 0 otherwise. By changing the parameter β one can alter the

proportion of 1s and 0s in the samples. Changing σ should have no effect on the substance

of the results since it is not identified when β is.

Probit and Linear Probability Model
1 # Set the sample size and save it in n

2 nulldata 100

3 scalar n = $nobs

4

5 # generate n observations on x

6 series x = uniform()

7 # set a seed to get same results each time

8 set seed 3213799

9 # Set the values of the parameters

10 scalar slope = .5 # regression slope

11 scalar sigma = 1 # measurement error in y

12

13 # start the loop, indicating the desired number of samples.

14 loop 400 --progressive --quiet

15 series u = normal(0,sigma)

16 # generate samples of ystar and y

17 series ystar=slope*x+u

18 series y = (ystar>0)

19 genr prop = mean(y)

20 # run the ols regression

21 ols y const x --robust
26

22 # save the estimated coefficients

23 genr b2 = $coeff(x)

24 genr s2 = $stderr(x)

25 # run the probit regression

26 probit y const x --p-values

27 genr bp2 = $coeff(x)

28 genr sp2 = $stderr(x)

29 genr ind = $coeff(const)+$coeff(x)*x

30 genr d = dnorm(ind)

31 genr ame = mean(d)*bp2

32 print b2 bp2 ame prop

33 endloop

In this exercise the data generation process is handled easily in lines 15, 17, and 18. The

proportions of 1s to 0s is computed in line 19 and its summary statistics printed out via line

32. Then both least squares and the probit MLE are used to estimate the parameters of the

binary choice model. In most courses great effort is made to discuss the fact that marginal

effects in probit models are different at each observation. This creates great angst for many.

In lines 29-31 the average marginal effects are computed for the regressor, x. The results

show that in fact the AME of the probit model and the slope from least squares are nearly

identical.

5.6. Tobit. To generate samples for tobit estimation requires an additional line in the probit

script. Recall that in the tobit model, all of the latent variables that are less than zero are

censored at zero. The continuous values above the threshold are actually observed. Thus,

add the line

series y = y*ystar

after line 20 in the probit script. The generation of y becomes:

18 series ystar=slope*x+u

19 series y = (ystar>0)

20 genr prop = mean(y)

21 series y = y*ystar

Adding this after computing the proportions of 1s enables one to keep track of how much

censoring occurs. Experiments could be conducted by changing the distance between actual

threshold and zero and the tobit estimator could be compared to least squares. This is

another poorly understood feature of this model. Choosing the proper threshold is critical
27

for proper performance of the MLE. For instance, add a constant of 20 to the right-hand side

of the equation in line 18, which generates the latent variable ystar, and change the actual

threshold in line 19 from 0 to 20. Increase the value of sigma, to 10 for instance, to create

more variation in y. Re-run the simulation and see that least squares is now far superior to

the tobit MLE, which erroneously assumes that the threshold is 0.

5.7. Nonlinear Least Squares. Gretl can also be used to estimate more complicated

models in a simulation. It includes generic routines for estimating nonlinear least squares,

maximum likelihood, and generalized method of moments estimators, the properties of which

can also be studied in this way. In the following example, nonlinear least is placed within

a loop and the estimates are collected in matrices and output to a data set. This simple

example could be used as a rough template for more advanced problems.

Consider the nonlinear consumption function

(7) Ct = α + βY γ
t + ut

where Ct is consumption and Yt is output. Using data from Greene (1999) that is included

in gretl, the model is estimated to obtain starting values, parameters are set, and simulated

samples are drawn. In the first snippet of code, the data are opened in line 1, the parameter

values set in lines 4-6, starting values are acquired by least squares (9-12) and a few matrices

are created in which results can be stored in lines 18 and 19.

Nonlinear least squares
1 open "greene11_3.gdt"

2 setobs 1 1 --cross-section

3 # Set the actual values of the parameters

4 scalar A = 180

5 scalar B = .25

6 scalar G = 1

7

8 # Starting values

9 ols C 0 Y

10 genr alpha0 = $coeff(0)

11 genr beta0 = $coeff(Y)

12 genr gamma0 = 1

13

14 # Set the number of Simulated Samples

15 scalar NMC = 1000

16

17 # Create an empty matrix to store results

18 matrix coeffs = zeros(NMC, 3)

19 matrix vcvs = zeros(NMC, 6)

20

21 # Create systematic portion of the model and log(y)
28

22 series C0 = A + B*Y^G

23 series lY = log(Y)

In the last two lines, series are created for the systematic portion of the model and for the

natural logarithm of Y, both of which only need to be generated once. Putting these outside

of the loop reduces computations.

In the next section, the loop is created. The nls function will not work with the progressive

option. This makes it marginally more difficult to accumulate results and to preserve them

for further analysis. The easiest way to proceed is to use the index loop structure, as in line

26. The index loop makes it easy to accumulate results in a matrix as the gretl iterates.

24 # The loop

25 set warnings off

26 loop i=1..NMC --quiet

27 # generate new sample

28 genr C = C0 + normal(0,10)

29 # Initialize parameters

30 alpha = alpha0

31 beta = beta0

32 gamma = gamma0

33

34 # Estimate parameters via NLS

35 nls C = alpha + beta * Y^gamma

36 deriv alpha = 1

37 deriv beta = Y^gamma

38 deriv gamma = beta * Y^gamma * lY

39 end nls --quiet

40

41 # Collect the coefficients into a vector and matrix

42 matrix coeffs[i,] = {alpha, beta, gamma}

43 matrix vcvs[i,] = vech($vcv)’

44 endloop

The nonlinear least squares estimator of the consumption function is found in lines 35-

39. To speed computations, the analytical derivatives are given. The loop ends with the

--quiet option in order to supress the output of 1000 nls iterations. In lines 42 and 43 the

coefficients and the estimated variances are placed into the matrices coeffs and vcvs that

were initialized in the first section of the program. As the index loop iterates, the coefficients

and variances are placed in the ith row of these two matrices. Later, they will be written to

data and analyzed.
29

In line 46 a new empty data set is opened that contains the number of Monte Carlo ob-

servations. If the --preserve option is not used, then the contents of all existing matrices

that are held in memory will be emptied when the new data set is opened. In lines 49-51,

each column of the saved coefficients matrix is written to a data series. The summary sta-

tistics are printed by line 54. Finally, in line 58 the Monte Carlo variance-covariance matrix

is obtained. To compare these to the average value of the estimated variances, line 59 is

included.

45 # open a new, empty dataset

46 nulldata NMC --preserve

47

48 # Convert the columns of matrix to data

49 series a = coeffs[,1]

50 series b = coeffs[,2]

51 series c = coeffs[,3]

52

53 # Print the summary Statistics

54 summary a b c

55

56 printf "Monte Carlo vcv vs average estimated vcv\n"

57

58 MCV = mcov(coeffs)

59 AEV = unvech(meanc(vcvs)’)

60

61 print MCV AEV

6. Conclusion

In this primer the basics of conducting a Monte Carlo experiment are discussed and the

concepts are put to use in gretl. As many authors have noted, Monte Carlo methods

illustrate quite clearly what sampling properties are all about and reinforce the concepts of

relative frequency in classical econometrics. The gretl software is particularly well-suited for

this purpose for several reasons, the main of which are its --progressive loop option and

its transparent programming language. Through a series of examples the ease with which

The examples includes linear regression, confidence intervals, the size and power of t-tests,

lagged dependent variable models, heteroskedastic and autocorrelated regression models,

instrumental variables estimators, and binary choice models. Scripts for all examples are

provided in the paper and are available from the author’s website.

Gretl can also be used to study the properties of more complicated estimators. This is

demonstrated for nonlinear least squares, but the result could apply to method of moments or
30

maximum likelihood estimation as well. For classroom use gretl is very highly recommended

since nearly every estimator one is likely to use in a one year introductory econometrics course

can be modeled and studied. Add to that that it is free and will work on any platform and

gretl is hard to beat for learning econometrics. Because of its numerical accuracy, excellent

scripting language, and ability to work with other open source software, it can also serve as

an excellent platform for research.

References

Adkins, Lee C. (2010), Using Gretl for Principles of Econometrics, Third Edition, ebook.

URL: http://www.learneconometrics.com/gretl/ebook.pdf

Baiocchi, Giovanni and Walter Distaso (2003), ‘Gretl: Econometric software for the gnu

generation’, Journal of Applied Econometrics 18(1), 105–110.

Barreto, Humberto and Frank M. Howland (2006), Introductory Econometrics using Monte

Carlo Simulation with Microsoft Excel, Cambridge University Press, New York.

Cottrell, Allin and Riccardo “Jack” Lucchetti (2010), Gretl Users Guide.

URL: http://sourceforge.net/projects/gretl/files/manual/

Davidson, Russell and James G. MacKinnon (1992), ‘Regression-based methods for using

control variates in monte carlo experiments’, Journal of Econometrics 54, 203–222.

Davidson, Russell and James G. MacKinnon (2004), Econometric Theory and Methods, Ox-

ford University Press, New York.

Day, Edward (1987), ‘A note on simulation models in the economics classroom’, Journal of

Economic Education .

Greene, William (1999), Econometric Analysis, 4th edn, Prentice Hall.

Hill, R. Carter, William E. Griffiths and Guay C. Lim (2008), Principles of Econometrics,

Third Edition, John Wiley & Sons, New York.

Judge, Guy (1999), ‘Simple monte carlo studies on a spreadsheet’, Computers in Higher

Education Economics Review 13(2).

Kennedy, Peter E. (2003), A Guide to Econometrics, Fifth Edition, MIT Press.

Mixon, J. Wilson Jr. and Ryan J. Smith (2006), ‘Teaching undergraduate econometrics with

gretl’, Journal of Applied Econometrics 21(7), 1103–1107.

Murray, Michael P. (2006), Econometrics: A Modern Introduction, Pearson Education,

Boston.

Racine, J. (2006), ‘gnuplot 4.0: A portable interactive plotting utility’, Journal of Applied

Econometrics 21, 133–141.

Rosenblad, Andreas (2008), ‘gret1 1.7.3’, Journal of Statistical Software, Software Reviews

25(1), 1–14.
31

Sul, Donggyu, Peter C. B. Phillips and Chi-Young Choi (2005), ‘Prewhitening bias in hac

estimation’, Oxford Bulletin Of Economics And Statistics 67(4), 517–546.

Train, Kenneth E. (2003), Discrete Choice Methods with Simulation, Cambridge University

Press, Cambridge, UK.

Yalta, A. Talha and A. Yasemin Yalta (2007), ‘Gretl 1.6.0 and its numerical accuracy’,

Journal of Applied Econometrics 22(4), 849 854.

Lee C. Adkins, Professor of Economics, College of Business Administration, Oklahoma

State University, Stillwater OK 74078

E-mail address: lee.adkins@okstate.edu

32

	Coverpage_OKSWP1103
	OKSWPS1103 2011-06
	1. Introduction–Using Monte Carlo Simulations in Econometrics
	2. Fully Specified Statistical Model
	3. Gretl Basics
	3.1. Ways to Work in Gretl
	3.2. Common Conventions
	3.3. Importing Data

	4. Monte Carlo Basics
	5. Examples
	5.1. Classical Normal Linear Regression and Confidence Intervals
	5.2. Autocorrelation and Lagged Dependent Variables
	5.3. Heteroskedasticity
	5.4. Instrumental Variables
	5.5. Binary Choice
	5.6. Tobit
	5.7. Nonlinear Least Squares

	6. Conclusion
	References

