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Abstract. In this paper I revisit the question of how several estima-
tor of an endogenous probit regression model perform in small samples.
Modern software usually contains two estimator that can be used to
estimate such a model. A simple generalized least squares estimator
suggested by Amemiya and explored by Newey is computationally sim-
ple, though not necessarily efficient. A maximum likelihood estimator is
also used, though its properties are less apparent in small samples. The
paper uses a simple experimental design employed by Rivers and Vuong
(1988) to estimate the parameters of an endogenous probit model and
conduct subsequent tests of parameter significance. Although Rivers
and Vuong (1988) find that their two-stage conditional maximum like-
lihood (2SCML) performs well in terms of bias and mean square error,
and similarly to other consistent alternatives, they did not examine how
well the estimators perform in significance tests. In the probit model
it is not altogether clear what the magnitude of the parameters actu-
ally mean; however, getting the correct signs and being able to test for
parameter significance is important. So, this paper can be seen as an
important extension of their work.

I add to the list of estimators compared, increase the dimension of
the experimental design, and explore the size of significance tests based
on these estimators. Most importantly, the effect of instrument strength
is explored. Other dimensions that affect the performance of the esti-
mators are modeled, including sample size, proportion of observations
equal to 1, correlation between instruments and endogenous variables,
correlation between endogenous regressor and equation error, and overi-
dentification. Finally, the estimators are used in an example to examine
the effect of managerial incentives on the use of foreign-exchange deriva-
tives.

Date: September 3, 2008.
Key words and phrases. Probit, Instrumental Variables, Monte Carlo, significance tests.
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2 LEE C. ADKINS

1. Introduction

Yatchew and Griliches (1985) analyze the effects of various kinds of mis-
specification on the probit model. Among the problems explored was that
of errors-in-variables. In linear regression, a regressor measured with error
causes least squares to be inconsistent and Yatchew and Griliches find sim-
ilar results for probit. Rivers and Vuong (1988) and Smith and Blundell
(1985) suggest two-stage estimators for probit and tobit, respectively. The
strategy is to model a continuous endogenous regressor as a linear function
of the exogenous regressors and some instruments. Predicted values from
this regression are then used in the second stage probit or tobit. These two-
step methods are not efficient, but are consistent. Consistent estimation of
the standard errors is not specifically considered and these estimators are
used mainly to test for endogeneity of the regressors–not their statistical
significance.

Newey (1987) explores the more generic problem of endogeneity in limited
dependent variable models (which include probit and tobit). He proposes
what is sometimes called Amemiya’s Generalized Least Squares (AGLS)
estimator as a way to efficiently estimate the parameters of probit or tobit
when they include a continuous endogenous regressor. This has become a
standard way to estimate these models and is an option in Stata 10.0 when
the MLE is difficult to obtain. The main benefit of using this estimator is
that it produces a consistent estimator of the standard errors and can easily
be used for subsequent hypothesis testing of the parameters.

More recent papers have explored limited dependent variable models that
have discrete endogenous regressors. Nicoletti and Peracchi (2001) look
at binary response models with sample selection, Kan and Kao (2005) con-
sider a simulation approach to modeling discrete endogenous regressors, and
Arendt and Holm (2006) extends Nicoletti and Peracchi (2001) to include
multiple endogenous discrete variables.

Iwata (2001) uses a very simple approach to dealing with errors-in-variables
for probit and tobit. He shows that simple recentering and rescaling of
the observed dependent variable may restore consistency of the standard IV
estimator if the true dependent variable and the IVs are jointly normally
distributed. His Monte Carlo simulation shows evidence that the joint nor-
mality may not be necessary to obtain improved results. However, the results
for tobit were quite a bit better than those for probit. He compares this es-
timator to a linear instrumental variable estimator that uses a consistent
estimator of standard errors. This estimator is used below.
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A paper by Blundell and Powell develops and implements “semiparametric
methods for estimating binary response (binary choice) models with contin-
uous endogenous regressors. It extends existing results on semiparametric
estimation in single-index binary response models to the case of endogenous
regressors. It develops an approach to account for endogeneity in triangular
and fully simultaneous binary response models.” (Blundell and Powell, 2004,
p. 655)

In this paper I compare the AGLS estimator to several of these alternatives.
The AGLS estimator is useful because it is simple to compute and yields
consistent estimators of standard error that can be used for significance tests
of the model’s parameters. The other plug-in estimators (like 2SCML) are
consistent for the parameters but not the standard errors, making it unlikely
that they will perform satisfactorily in hypothesis testing.

The Monte Carlo design is based on that of Rivers and Vuong (1988), which
gives us a way to calibrate results. Rivers and Vuong (1988) compare several
limited information estimators for simultaneous probit models. The com-
parison includes three different 2-step estimators and a limited information
maximum likelihood estimator (ML). They are compared based on compu-
tation ease, bias and MSE, asymptotic efficiency, and as the basis for an
exogeneity test. In these limited dimensions, the 2SCML actually performs
reasonably well compared to the ML estimator.

Still there are a few issues left unresolved by Rivers and Vuong (1988).
First, the instruments they use are very strong and variation in instrument
strength is not part of their design. In light of the what we now know about
the effect of weak instrument in linear regression (Staiger and Stock (1997);
Stock and Yogo (2005) we need to know how these estimators perform when
the instruments are weak. Second, they examine the performance of several
estimators only in the case where the proportion of 1s and 0s in the bi-
nary dependent variable is balanced. Following Zuehlke and Zeman (1991),
we need to know whether this proportion affects bias and testing in these
models. Third, Rivers and Vuong only examine the bias of the estimators;
but, how do they measure up as a means of testing parameter significance?
Finally, a few alternative estimators are added to the simulation ‘derby’,
principally a pretest estimator, to determine whether the poor properties of
2SCML or AGLS can be improved when endogeneity is not a problem.

2. Linear model

Following the notation in Newey (1987), consider a linear statistical model
in which the continuous dependent variable will be called y∗t but it is not
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directly observed. Instead, we observe yt in only one of two possible states.
So,

(2.1) y∗t = Ytβ +X1tγ + ut = Ztδ + ut, t = 1, . . . , N

where Zt = [Yt, X1t], δ′ = [β′, γ′], Yt is the tth observation on an endogenous
explanatory variable, X1t is a 1xs vector of exogenous explanatory variables,
and δ is the qx1 vector of regression parameters.

The endogenous variable is related to a 1XK vector of instrumental variables
Xt by the equation

(2.2) Yt = X1tΠ1 +X2tΠ2 + Vt = XtΠ + Vt

where Vt is a disturbance. The K − s variables in X2t are additional exoge-
nous explanatory variables. Equation (2.2) is the reduced form equation for
the endogenous explanatory variable. Without loss of generality only one
endogenous explanatory variable is considered below. See Newey (1987) for
notation extending this to additional endogenous variables.

When the continuous variable y∗t is observed, then one could use either least
squares or instrumental variable estimator to estimate δ. Collecting the n
observations into matrices y∗, X, and Z of which the tth row is y∗t , Xt, and Zt,
respectively we have the least squares estimator of δ, δ̂ols = (ZTZ)−1ZT y∗,
which is biased and inconsistent.

The instrumental variable estimator uses the orthogonal projection of Z
onto the column space of X, i.e., PXZ where PX = X(XTX)−1XT . The IV
estimator is

(2.3) δliv = (ZTPXZ)−1ZTPXy
∗.

The (linear) instrumental variable estimator is biased in finite samples, but
consistent. The heteroskedasticity robust estimator of covariance (Davidson
and MacKinnon, 2004, p. 335) is

(2.4) Σ̂HCCME = (ZTPXZ)−1ZTPXΦ̂PXZ(ZTPXZ)−1

where Φ̂ is an nxn diagonal matrix with the tth diagonal element equal to
û2
t , the squared IV residual.

3. Binary Choice

In some cases, y∗t is not directly observed. Instead, we observe

(3.1) yt =

{
1 y∗t > 0
0 otherwise
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Assuming the errors of the model (2.1) are normally distributed leads to the
probit model.

There are several estimators of this model that will be considered, some
consistent for δ and others not. The first is least squares. The least squares
estimator δ̂ols = (ZTZ)−1ZT y∗ is consistent if Z is exogenous. If any of the
elements of Z are endogenous then it is not. Still, it is easy to compute and
the degree of inconsistency may be small in certain circumstances.

The linear instrumental variable estimator (2.3) is also inconsistent and
heteroscedastic. Iwata (2001) suggests a means of rescaling and recentering
(RR) the data that can bring about consistency in this case. However, in
his Monte Carlo the RR versions of OLS and IV estimation don’t perform
particularly well for probit (although much better for tobit).

Next, the usual probit mle can be estimated. However, if the regressors are
endogenous, then this estimator is also inconsistent (Yatchew and Griliches
(1985)). To develop the notation, let the probability that yt is equal one be
denoted

(3.2) pr(yt = 1) = Φ(yt, Ytβ +X1tγ) = Φ(yt, Ztδ)

where Φ is the normal cumulative density, yt is the observed binary depen-
dent variable, and Ytβ + X1tγ is the (unnormalized) index function. As
usual, the model is normalized assuming σ2 = 1. Basically, this equation
implies that Yt, and X1t be included as regressors in the probit model and
the log likelihood function is maximized with respect to δT = [βT , γT ]. Since
the endogeneity of Yt is ignored, the mle is inconsistent.

The next estimator used predicted values of Yt from a first stage least squares
estimation of equation (2.2). Denote the first stage as Ŷt = X1tΠ̂1+X2tΠ̂2 =

XtΠ̂ where Xt = [X1t
...X2t] and Π̂T = [Π̂T

1

...Π̂T
2 ]. Then the conditional prob-

ability

(3.3) pr(yt = 1) = Φ(yt, Ẑtδ)

with Ẑt = [Ŷt
...X1t]. The parameters are found by maximizing the conditional

likelihood. This is referred to here as IV probit (IVP).

Another estimator adds the least squares residuals from equation (2.2), V̂t =
Yt −XtΠ̂ to (3.3). This brings

(3.4) pr(yt = 1) = Φ(yt, Ŷtβ +X1tγ + V̂tλ) = Φ(yt, Ẑtδ + V̂tλ)

which is estimated by maximum likelihood, again conditional on Π̂. This is
similar to an estimator used by Rivers and Vuong (1988) which takes the
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form

(3.5) pr(yt = 1) = Φ(yt, Ztδ + V̂tρ)

The parameter ρ is related to λ in (3.4) by λ = ρ+ β. This follows because
Ztδ = Ẑtδ + V̂tβ.

An efficient alternative to (3.4) is Amemiya’s generalized least squares (AGLS)
estimator as proposed by Newey (1987). The AGLS estimator of the endoge-
nous probit model is fairly easy to compute, though there are several steps.
The basic algorithm proceeds as follows:

(1) Estimate the reduced form (2.2), saving the estimated residuals, V̂t
and predicted values Ŷt.

(2) Estimate the parameters of a reduced form equation for the probit
model using the mle. In this case,

(3.6) pr(yt = 1) = Φ(yt, Xtα+ V̂tλ)

Note that all exogenous variables, X1t and instruments X2t are used
in the probit reduced form and the parameters on these variables is
labeled α. Let the mle be denoted α̂. Also, save the portion of the
estimated covariance matrix that corresponds to α̂, calling it Ĵ−1

αα .
(3) Another probit model is estimated by maximum likelihood. In this

case it is the 2SIV estimator of equation (3.4). Save ρ̂ = λ̂− β̂ which
is the coefficient of V̂t minus that of Ŷt.

(4) Multiply ρ̂Yt and regress this on Xt using least squares. Save the
estimated covariance matrix from this, calling it HatΣ.

(5) Combine the last two steps into a matrix, Ω = Ĵ−1
αα + Σ̂.

(6) Then, the AGLS estimator is

(3.7) δA = [D(Π̂)TΩ−1D(Π̂)]−1D(Π̂)TΩ−1α̂

The estimated variance covariance is [D(Π̂)TΩ−1D(Π̂)]−1 andD(Π̂) =

[Π̂
...I1] where I1 is a Kxs selection matrix such that X1t = XtI1.

Below is a summary of the estimators used in the simulation:
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Estimator Variables Parameters Equation
OLS Zt δ, σ2 (ZTZ)−1ZT y

Linear IV Ẑt δ, σ2 (ZTPXZ)−1ZTPXy
Probit mle Zt δ (3.2)

Probit mle (IVP) Ẑt δ (3.3)
Probit mle Ẑt, V̂t δ, λ (3.4)

Probit mle (2SCML) Zt, V̂t δ, ρ (3.5)
Probit mle (RF) Xt, V̂t α, λ (3.6)

AGLS D(Π̂), α̂ δ (3.7)

Rivers and Vuong (1988) compare several of these. They compare (3.3),
(3.4), and (3.7).

One thing that complicates comparison of these estimators is that some use
a different normalization. One alternative is to compare marginal effects.
This is the approach taken by Arendt (2001). This choice is appealing since
this is the quantity that interests many. However, I have chosen to compare
coefficients, which will require some adjustments to the design to eliminate
any differences that would be due to the different normalizations.

Rivers and Vuong also consider several tests of exogeneity. A simple Wald
test was shown to be useful in testing exogeneity of the regressor and it will
be used as the basis of a pretest estimator that will also be considered. The
pretest estimator can be written

(3.8) δpt = I(t)[0,cα)δmle + I(t)[cα,∞)δiv

where I(t)a,b is an indicator function that takes the value of 1 if t falls within
the [a, b) interval and is zero otherwise. In our example, t will be the test
statistic associated with the exogeneity null hypothesis, cα is the α level
critical value from the sampling distribution of t, δmle is the usual probit
mle and δiv is one of the instrumental variables probit estimators.

Since none of the IV probit estimators perform very well when the regressor
is exogenous, one usually tests this proposition first to determine which
estimator to use. Below a pretest is conducted and IV or probit is estimated
based on the outcome of this test.

4. Simulation

The statistical properties of the various estimators of an endogenous probit
model will be studied using simulation. Bias, standard error, and the size
of a test of significance on the endogenous variable will be studied. There
are various dimensions that can affect the performance of estimators of this
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model. Sample size, proportion of observations where yt = 1, correlation
between instruments and the endogenous variable, the correlation between
the endogenous variable and the equation’s error, and the relative variability
of the endogenous regressor and the equation’s error. Other dimensions
could be examined. These include the effects of overidentification and of
other estimators of the model.

Once a successful estimator is found, additional simulations are conducted to
determine if marginal improvements can be obtained by using ML estimators
and tests. These simulations are much more limited in scope due to their
computational complexity. Still, based on the performance of the simple
estimators, interesting design points can be explored and one can gain a
good idea of how the ML (or bootstrapping) may perform in practice.

4.1. Design. A simple model is considered that has a single, possibly en-
dogenous, regressor. The Monte Carlo design shares some similarity to that
of Hill et al. (2003) which is based on Zuehlke and Zeman (1991), and modi-
fied by Nawata and Nagase (1996). To make comparisons with prior research
easier to make, the design of Rivers and Vuong (1988) is incorporated as well
and their notation will be adopted with some minor modifications. The per-
formances of the estimators are examined under various circumstances. This
list may grow as the research proceeds.

The vector of endogenous explanatory variables contains a constant and one
continuous explanatory variable, y2i, and an exogenous regressor, x2i.

(4.1) y∗1i = γy2i + β1 + β2x2i + ui

In the just identified case

(4.2) y2i = π1 + π2x2i + π3x3i + νi

and the over-identified case,

(4.3) y2i = π1 + π2x2i + π3x3i + π4x4i + νi

The exogenous variables (x2i, x3i, x4i) are drawn from multivariate normal
distribution with zero means, variances equal 1 and covariances of .5. The
disturbances are creates using

(4.4) ui = λνi + ηi

where νi and ηi standard normals and the parameter λ is varied on the
interval [−2, 2] to generate correlation between the endogenous explanatory
variable and the regression’s error. The parameters of the reduced form are
θπ where π = π1 = 0, π2 = 1, π3 = 1, π4 = −1 and θ is varied on the interval
[.05, 1]. This allows us to vary the strength of the instruments, a design
element not considered in Rivers and Vuong (1988).
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In the probit regression, β2 = −1. The intercept takes the value −2, 0, 2,
which corresponds roughly to expected proportions of y1i = 1 of 25%, 50%,
and 75%, respectively. In terms of the notation developed in the preceding
section δ = γ, β1, β2. For the simulation, γ = 0. This will make it possible to
compare test sizes without adopting different normalizations for the various
models. Other simulations were conducted with γ = 1 and no substantive
differences were noted. When γ = 0, the endogenous regressor is still cor-
related with the probit equation’s error even though it has no direct effect
on y1i. This allows us to measure the size of a t-test on the endogenous
variable without having to worry about differences in scaling under different
parameterizations of the model (Rivers and Vuong, 1988, p. 361).

Two sample sizes are considered, 200 and 1000. One thousand Monte Carlo
samples are generated for each combination of parameters. Several statistics
are computed at each round of the simulation. These include the estima-
tor of δ = [γ, β1, β2], an estimate of their standard errors, a t-ratio of the
hypothesis that γ = 0 (for size). Power will be examined separately and
only indirectly when a comparison is made with the ML estimator. A direct
comparison is difficult due to the implied differences in scaling.

Below you will find a summary of the design characteristics of the Monte
Carlo experiments. The first design element is variation of the parameter λ.
This parameter controls the degree of correlation between the endogenous
explanatory variable and the probit’s error. When λ = 0, the regressor is
exogenous and the usual probit (or least squares/linear probability model)
should perform satisfactorily. The correlations associated with each value of
λ are given below. Also, I have included the parameter ω, which measures
the standard error of the probit’s reduced form error1. Notice that higher
values of correlation increase the standard error of the reduced form. Also,
these values differ a bit from Rivers and Vuong (1988) since I have let λ = 0.

λ
2 1 0.5 0 -0.5 -1 -2

corr(u,v) 0.894 0.707 0.447 0 -0.447 -0.707 -0.894
ω 2.236 1.414 1.118 1 1.118 1.414 2.236

Instrument strength is varied in the experiments. Below you will find a
table showing the relationship between the design parameter θ and more
conventional measures of the fit provided by the reduced form equations.
For each of the design points, the R2 and overall F-statistic of regression
significance were computed. The average values for each design are included
in the table.

1
√

(1 + (γ + λ)2)σ2
v) and λ = 0 and σ2

v = 1
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One thing is obvious. The fit is not being held constant in the experi-
ments. By using the same value of θ in each of the four sets of experiments,
the R2 and overall-F statistic of regression significance vary. In general,
adding observations reduces R2 and increases the overall F. Adding regres-
sors (overidentification) reduces both. As will be seen, the resulting biases
are reasonably controlled when the overall F statistic is above 10. This is
consistent with the results of Stock and Yogo (2005).

θ
0.05 0.1 0.25 0.5 1

n=200; just identified
R2 .023 .048 .19 .47 .78

Overall-F 1.8 4.5 22.5 88 348
n=1000; just identified

R2 .011 .032 .165 .44 .76
Overall-F 4.8 16.3 97 389 1558

n=200; over identified
R2 .024 .037 .120 .50 .65

Overall-F 1.3 2.2 8.6 31 121
n=1000; over identified

R2 .009 .022 .109 .32 .65
Overall-F 2.6 7.1 40 157 625

5. Results

Initial computations indicated that the proportion of 1’s in the sample have
no systematic effect on the magnitude of bias. This may be more important
in other uses, e.g., sample selectivity models (see Hill et al. (2003)) and the
results include below exclude these cases.

Below you will find eight tables. Table 1 includes bias for each design point
based on 1000 Monte Carlo samples. It is broken into subtables a, b, c, and
d, reflecting differences in sample size and overidentification of the model.
Table 1a is based on samples of size 200 for a just identified model. Ta-
ble 1b is just identified with 1000 observations. Tables 1c and 1d are for
overidentified models, with c based on 200 observations and d on 1000.

The parameter labeled ‘theta’ controls the strength of the instruments. As θ
increases, instruments become stronger. Rivers and Vuong (1988) implicitly
used only θ = 1, which implies very strong instruments.

Before presenting more detailed results, here is a summary of the main
findings.
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(1) When there is no endogeneity, OLS and Probit work well (as ex-
pected).

(2) It is clear that OLS and Probit should be avoided when you have an
endogenous regressor.

(3) Weak instruments increase the bias of AGLS. The bias increases as
the correlation between the endogenous regressor and the equation’s
error increases.

(4) The actual size of a parameter significance test based on the instru-
mental variable probit is reasonably close to the nominal level in
nearly every instance. This is surprising for at least two reasons. 1)
The bias of IVP is substantial when instruments are weak. 2) The
test statistic is based on an inconsistent estimator of the standard
error. No attempt was made to estimate the covariance of this esti-
mator consistently, as is done in Limdep 9 Greene (2007). It is not
often when one can use a biased estimator with inconsistent stan-
dard errors to construct a t-test that has desirable levels of type I
error. This is the case here.

(5) The size of the significance tests based on the AGLS estimator is
also reasonable, but the actual size is larger than the nominal size–
a situation that gets worse as severity of the endogeneity problem
increases. When instruments are very weak, the actual test rejects
a true null hypothesis twice as often as it should.

(6) Linear instrumental variables estimators that use consistent estima-
tors of standard errors can be used for this purpose (significance
testing) though their performance is not quite up to that of the
AGLS estimator. The Linear IV estimator performs better when
the model is just identified.

(7) There is an improvement in bias and the size of the significance test
when samples are larger. Mainly, smaller samples require stronger
instruments in order for bias to be small and tests to work properly
(other than IVP, which as mentioned above, works fairly well all the
time).

(8) There is little to be gained by pretesting for endogeneity. When
instruments are extremely weak it is outperformed by the other es-
timators considered, except when the no endogeneity hypothesis is
true (and probit should be used). Bias is reduced by small amounts,
but it is uncertain what one would use as an estimator of standard
errors for a subsequent t-test.

(9) When instruments are weak, t-tests based on ML are no better than
ones based on AGLS (in fact, one could argue that they are worse).
Significance testing based on the ML estimator is much more reliable
in large samples.
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5.1. Bias. In table 1a the bias of each estimator is given for each of the
design points considered. There is one endogenous variable and one instru-
ment; the model is just identified. If there is any correlation between the
regressor and the regression error, then weak instruments create considerable
bias. It is actually not clear whether these instrumental variables estimators
even have a mean in this case since subsequent simulations yielded quite dif-
ferent numerical results (though they were just as biased). When θ = .25
the corresponding F − statistic is 22, indicating that the instruments are
reasonably strong. This is well beyond the oft recommended threshold of 10
Staiger and Stock (1997). Bias of the AGLS estimator is in the ±.5 range.
Once λ = .5 bias is actually quite small. Notice that the AGLS and 2SCML
results are identical; this is as expected. The benefit of using AGLS in our
case is that it yields a consistent estimator of its standard error. This is not
the case for 2SCML. This will become apparent when looking at the actual
sizes of the 10% t-tests.

In table 1b the sample size is increased to 1000. The main difference is
that biases are smaller and the results for θ = .25 are now quite good; the
average value of the F-statistic is 97. IVP is erratic when instruments are
weakest, and in this case the AGLS and 2SCML are better choices. When
the instruments are very strong (θ ≥= .5), all perform well in terms of bias.

In table 1c you will find the results for samples of size 200 for a model
that has 2 instruments (overidentified). Overidentification appears to have
reduced bias somewhat. Certainly, bias figures for θ = .25 in samples of 200
are quite good. There is some small deviation between AGLS and 2SCML
now. This is expected in an overidentified model. When instruments are
only moderately strong, AGLS actually performs slightly better; the biases
are less than .01 in absolute value except the case when λ = −2. For
stronger instruments, like those considered by Rivers and Vuong, there is no
difference.

Increasing the sample size to 1000 in the overidentified case (table 1d) im-
proves things further. Only under severe correlation among errors does the
bias of AGLS rise above .17 when instruments are very weak (θ = .1).

The bottom line is, if your sample is small and instruments weak, don’t
expect very reliable estimates of the IV probit model’s parameters. They
are quite erratic (see Tables 3a and 3b for Monte Carlo standard errors)
and the bias can be substantial. If instruments are strong and correlation
low, then the two-step AGLS estimator performs about as well as can be
expected and is a reasonable choice. This may account for it’s inclusion as
an option in Stata.
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5.2. Size. In table 2a the actual size of a nominal 10% significance test on
γ is measured. Again, there is one endogenous variable and one instrument;
the model is just identified. The first thing to notice is that the actual size
of the test based on the IVP estimator is very close to the nominal 0.1 level.
This is a surprise for two reasons. Even though it is consistent, the estimator
is seldom used. Limdep 9 is an exception. Second, no effort was made to
estimate the standard errors consistently. Simply using the outcome of the
Newton-Raphson algorithm in the second step is known to be inconsistent.
Limdep uses a Murphy-Topel Murphy and Topel (1985) sandwich covariance
estimator to obtain consistent estimates of standard error. Bootstrapping
would be another way of obtaining consistent standard errors. Given the
relatively good performance of this estimator, a more careful comparison
of AGLS and Limdep’s approach would be useful. It remains to be seen
whether these alternatives could be used to further improve performance
here.

The linear IV estimator also performs reasonably well in all circumstances.
The largest size distortion is .03 (θ = .05, λ = 2). In only three instances
is the size larger than .11. This is very respectable. The AGLS estimator is
not quite as good. When the correlation increases, the actual size of the test
increases with it. The worst case is when the instruments are very weak.
The 2SCML results can be safely disregarded since no effort was made to
estimate its standard error consistently.2 When the instruments are strong,
the set of consistent tests perform quite well even with a relatively small
sample of size 200.

In table 2b the sample is increased to 1000. Predictably the results improve
for most cases. Unfortunately, the size distortion of the AGLS estimator
seems to be getting worse as the correlation between the errors increases.
At θ = 1, λ = −2 a nominal 10% test is rejecting a true null hypothesis 14%
of the time. This is not terrible, but I expected better.

In table 2c we examine the overidentified case using 200 observations. Overi-
dentification is not improving things here at all. The magic IVP estimator
is now experiencing some small size distortion when instruments are weak
and the size distortion of the AGLS estimator is becoming quite large (.198)
at some points. In table 2d the larger sample reduces the size distortion of
AGLS, but it is still rejecting a true null hypothesis at higher rates than
we’d like (.175). The t-test does not perform poorly, but its behavior is
a little puzzling. Overidentification does not improve its performance and
you are probably better off discarding excess instruments, even if they are
relatively strong.

2I used the −H−1 where H is the Hessian matrix evaluated at the parameter estimates
(i.e., Newton-Raphson see Griffiths et al. (1987) for details.
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In tables 3a and 3b the Monte Carlo standard errors of the estimated co-
efficient on the endogenous variable are given. In table 3a the estimator is
based on a sample of 200; in table 3b the sample size is 1000. When instru-
ments are weak, the variation in instrumental variables estimators is very
large, especially when correlation between errors is zero (or very large). The
former result is expected.

When the instruments are relatively strong (θ ≥ .5 for n=200 or θ ≥ .25 for
n=1000) the variation is small and in most cases the biases of the IV esti-
mators (tables 1a-1d) are not significantly different from zero. The erratic
behavior of these estimators when instruments are weak should be apparent
when instruments are weak, though.

5.3. ML vs AGLS. The last comparison is between ML (maximum likeli-
hood) and Amemiya’s GLS estimator. These are the two options available
in Stata 10, which make them popular choices in applied work. A more
thorough analysis of ML was not conducted because of computational diffi-
culties.3 There are many circumstances when the ML estimator refuses to
converge and this makes analysis of its properties in Stata very difficult.

To get some idea of how these two estimators compare, I chose 4 designs and
examined the summary statistics associated with the coefficient estimates
and the p-values for the t-test. This was repeated for samples of 200 and
1000. The four designs consist of combinations of strong/weak instruments
and high/low correlation among errors. Accordingly, the four combinations
of λ = .5, 2 and θ = .1, 1 were examined. The results for n=200 appear
in table 4a. For the sample size of 1000, ML refused to converge for many
designs when θ = .1 so I strengthened the instruments in this case by letting
θ = .25; these results appear in table 4b.

Looking at table 4a, you’ll notice that the AGLS estimator is very imprecise
when instruments are weak and correlation low (θ = .1, λ = .5). The
1% estimate is -44.751 and the 99% is 48. Compare that to ML which
ranged from -1.021 to 1.253. By this measure ML looks like a much better
choice for estimating the parameters. The AGLS estimator is slightly more
biased (negatively) due to the large (negative) skewness. Kurtosis of this
(asymptotically) normal statistic is 255!

From a testing standpoint, however, ML doesn’t look so good. The 5%
and 10% p-values are essentially zero when the instruments are weak. The
truth (no effect) is always rejected. On the other hand, those of AGLS are
substantially greater than nominal values when endogeneity problem is not

3The MLE is badly behaved when instruments are weak. It is prone to no converge
when the model’s parameters are not strongly identified via the data.
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as severe. As the endogeneity worsens the AGLS actually performs close to
the desired level.

Increasing the correlation between errors (θ = .1, λ = 2) makes parameter
estimation worse. The problem here though is that the t-ratios tend to be
too large, by a substantial amount. The 10% test rejects only 1% of the
time. The AGLS based test now has about the right size (10.5%).

When the instruments are stronger, the choice is much clearer. Both AGLS
and ML perform similarly in testing; ML is still much more precise and we
would expect tests based on it to be more powerful.

6. Example

I this section a brief example from Adkins et al. (2007). The main goal of
that paper was to determine whether managerial incentives affect the us of
foreign exchange derivatives by bank holding companies (BHC). There was
some speculation that several of the variables in the model were endoge-
nous. The dependent variable of interest is an indicator variable that takes
the value 1 if the BHC uses foreign exchange derivative. The independent
variables are as follows:

Ownership by Insiders. When managers have a higher ownership position
in the bank, their incentives are more closely aligned with shareholders so
they have an incentive to take risk to increase the value of the call option
associated with equity ownership. This suggests that a higher ownership
position by insiders (officers and directors) results in less hedging. The
natural logarithm of the percentage of the total shares outstanding that are
owned by officers and directors is used as the independent variable.

Ownership by Institutional Blockholders. Institutional blockholders have in-
centive to monitor the firm’s management due to the large ownership stake
they have in the firm (Shleifer and Vishny (1986)). Whidbee and Wohar
(1999) argue that these investors will have imperfect information and will
most likely be concerned about the bottom line performance of the firm. The
natural logarithm of the percentage of the total shares outstanding that are
owned by all institutional investors is included as an independent variable
and predict that the sign will be positive, with respect to the likelihood of
hedging.

CEO Compensation. CEO compensation also provides its own incentives
with respect to risk management. In particular, compensation with more
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option-like features induces management to take on more risk to increase
the value of the option (Smith and Blundell (1985); Tufano (1996)). Thus,
higher options compensation for managers results in less hedging. Two
measures of CEO compensation are used: 1) annual cash bonus and 2)
value of option awards.

There is a possibility that CEO compensation is endogenous in that suc-
cessful hedging activity could in turn lead to higher executive compensa-
tion. The instruments used for the compensation variables are based on the
executive’s human capital (age and experience), and the size and scope of
the firm (number of employees, number of offices and subsidiaries). These
are expected to be correlated with the CEOs compensation and be prede-
termined with respect to the BHCs foreign exchange hedging activities.

BHC Size. The natural logarithm of total assets is used to control for the
size of the BHC.

Capital. The ratio of equity capital to total assets is included as a control
variable. The variable for dividends paid measures the amount of earnings
that are paid out to shareholders. The higher the variable, the lower the
capital position of the BHC. The dividends paid variable is expected to have
a sign opposite that of the leverage ratio.

Like the compensation variables, leverage should be endogenously deter-
mined. Firms that hedge can take on more debt and thus have higher
leverage, other things equal.

Foreign Exchange Risk. A bank’s use of currency derivatives should be re-
lated to its exposure to foreign exchange rate fluctuations. The ratio of in-
terest income from foreign sources to total interest income measures foreign
exchange exposure. Greater exposure, as represented by a larger proportion
of income being derived from foreign sources, should be positively related
to both the likelihood and extent of currency derivative use.

Profitability. The return on equity is included to represent the profitability
of the BHCs. It is used as a control.

6.1. Results. In this section the results of estimation are reported. Table
5 contains some important results from the reduced form equations. Due
to the endogeneity of leverage and the CEO compensation variables, instru-
mental variables estimation is used to estimate the probability equations.
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Table 6 reports the coefficient estimates for the instrumental variable esti-
mation of the probability that a BHC will use foreign exchange derivatives
for hedging. The first column of results correspond to the AGLS estimator
and the second column, ML.

In Table 5 summary results from the reduced form are presented. The
columns contain p-values associated with the null hypothesis that the in-
dicated instrument’s coefficient is zero in each of the four reduced form
equations. The instruments include number of employees, number of sub-
sidiaries, number of offices, CEO’s age–which proxies for his or her experi-
ence, the 12 month maturity mismatch, and the ratio of cash flows to total
assets (CFA). The p-values associated with the other variables have been
suppressed to conserve space.

Each of the instruments appears to be relevant in that each is significantly
different from zero at the 10% (p-value < 0.1) in at least one equation; the
number of employees, number of subsidiaries, and CEO age and CFA are
significant in one equation; the number of offices, employees, subsidiaries are
significant in two equations.

The overall strength of the instruments can be roughly gauged by looking
at the overall fit of the equations. The R2 in the leverage equation is the
smallest (0.29), but is still high relative to the results of the Monte Carlo
simulation. The instruments, other than the 12 month maturity mismatch,
appear to be strong and we have no reason to expect poor performance from
either estimator in terms of bias.

Given the simulations suggest discarding extra instruments, this would be
recommended here. Which to drop, other than the mismatch variable is
unclear. CFA, Age, and subsidiaries are all strongly correlated with leverage;
office and employees with options; and, employees, subsidiaries, and offices
with bonuses. The fit in the leverage equation is weakest, yet the p-values
for each individual variable is relatively high. For illustrative purposes, we
plow forward with the current specification.



18 LEE C. ADKINS

Table 5. Summary Results from Reduced-form
Equations. The table contains p-values for the instruments
and R2 for each reduced form regression. The data are taken
from the Federal Reserve System’s Consolidated Financial
Statements for Bank Holding Companies (FR Y-9C), the
SNL Executive Compensation Review, and the SNL Quar-
terly Bank Digest, compiled by SNL Securities.

Reduced Form Equation
Leverage Options Bonus

Instruments Coefficient P-values
Number of Employees 0.182 0.000 0.000
Number of Subsidiaries 0.000 0.164 0.008
Number of Offices 0.248 0.000 0.000
CEO Age 0.026 0.764 0.572
12 Month Maturity Mismatch 0.353 0.280 0.575
CFA 0.000 0.826 0.368
R-Square 0.296 0.698 0.606

Table 6: IV Probit Estimates of the Probability of
Foreign-Exchange Derivatives Use By Large U.S.
Bank Holding Companies (1996-2000). This table con-
tains estimates for the probability of foreign-exchange deriv-
ative use by U.S. bank holding companies over the period
of 1996-2000. To control for endogeneity with respect to
compensation and leverage, we use an instrumental variable
probit estimation procedure. The dependent variable in the
probit estimations (i.e., probability of use) is coded as 1 if
the bank reports the use of foreign-exchange derivatives for
purposes other than trading. The data are taken from the
Federal Reserve System’s Consolidated Financial Statements
for Bank Holding Companies (FR Y-9C), the SNL Executive
Compensation Review, and the SNL Quarterly Bank Digest,
compiled by SNL Securities. Approximate p-values based on
the asymptotic distribution of the estimators are reported in
parentheses beneath the parameter estimates.

Instrumental Variables Probit
AGLS ML

Leverage 21.775 12.490
(0.104) (0.021)

Option Awards -8.79E-08 -5.11E-08
(0.098) (0.002)

Bonus 1.76E-06 1.02E-06
(0.048) (<0.001)
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Continued from preceding page
Instrumental Variables Probit

AGLS ML
Total Assets 0.365 0.190

(0.032) (0.183)
Insider Ownership % 0.259 0.145

(0.026) (0.016)
Institutional Ownership % 0.370 0.201

(0.006) (0.041)
Return on Equity -0.034 -0.020

(0.230) (0.083)
Market-to-Book ratio -0.002 -0.001

(0.132) (0.098)
Foreign to Total Interest Income Ratio -3.547 -2.177

(0.356) (0.127)
Derivative Dealer Activity Dummy -0.280 -0.154

(0.257) (0.288)
Dividends Paid -8.43E-07 -4.84E-07

(0.134) (0.044)
D=1 if 1997 -0.024 -0.016

(0.930) (0.914)
D=1 if 1998 -0.244 -0.133

(0.352) (0.383)
D=1 if 1999 -0.242 -0.134

(0.391) (0.395)
D=1 if 2000 -0.128 -0.065

(0.643) (0.685)
Constant -9.673 -5.188

(<0.001) (4.40E-02)
Sample size 794 794

In light of the results from the Monte Carlo the significance tests based on
ML may be misleading in this instance. The results correspond the closest to
those in Table 2d. The model is overidentified, sample is large (700+), and
the instruments are very strong (θ = .5 or θ = 1). Leverage is significant
in ML at the 10% level, but not with AGLS. Similarly, return-on-equity,
market-to-book, and dividends paid are all significant in the ML regression
but not AGLS. This divergence of results is a little troubling. In the sim-
ulations, ML p-values were too small when instruments were mildly strong
and correlation low. If the endogeneity problem is not severe, then the ML
estimation and AGLS results tended to diverge. If this is the case, then
AGLS estimates may be more reliable for testing purposes. In the case of
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very strong instruments, the AGLS estimator tended to be insignificant too
often. In this example, we fell right in the middle and no strong recommen-
dation can be made.

7. Conclusion

The bottom line is this: if you are stuck with weak instruments, and your
goal is to test the significance of a variable in an endogenous probit model,
be careful. None of the estimators considered do this very well, but a small
nod goes to IVP and AGLS. When instruments are strong, by all means use
the more efficient ML estimator, especially if it is computationally feasible.
Also, overidentification should be avoided if possible. It doesn’t appear to
help the performance of the IV estimators either in terms of bias or testing.
Certainly, a more thorough examination of this would need to be made
before passing final judgement.

As final note, Limdep’s approach deserves some study. Limdep uses the
IVP estimator along with consistent estimators of the standard errors using
Murphy-Topel approach. This is easy to implement in other software and a
comparison of this to the AGLS and ML estimator looks like a good way to
proceed.

8. Gauss Code

retcode=0;
nn=200;
nmc=1000;
state = 1890780797;
state = 189078079741;
state1=890809;
qlevel = { .025, .975 };

/* Generate X for the reduced form equation */
t=100;
cov=.5*ones(3,3);
cov[1,1]=1;
cov[2,2]=1;
cov[3,3]=1;
x=rndn(nn,3)*chol(cov);
xm=ones(nn,1)~x;
pie = {0,1,1,-1};
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/* Coefficients for the RF */
pies = {0,1,1,-1};

/* X = regressors
** W = Probit regressors
** Z = instruments
** y = regression dep var
** v = probit dep var
*/

/* Create some storage matricies */
bmat=zeros(nmc,8);
smat1=zeros(nmc,7); /* storage for probit IV */
tmat0=zeros(nmc,7);
tmat1=zeros(nmc,7);
otherstat=zeros(nmc,4);
xbmat=zeros(1,12);
xbiasmat=zeros(1,12);
xsmat=zeros(1,11);
t0mat=zeros(1,11);
t1mat=zeros(1,11);
mcsemat=zeros(1,12);
othermat = zeros(1,4);
crlmat=zeros(1,11);
crumat=zeros(1,11);

/* First Loop:
** Correlation between u and v
*/
/* Instrument strength */

rhoxiter = 1;
do while (rhoxiter <= 5);
/* Instrument correlation */
if rhoxiter == 1; theta=.05; endif;
if rhoxiter == 2; theta=.1; endif;
if rhoxiter == 3; theta=.25; endif;
if rhoxiter == 4; theta=.5; endif;
if rhoxiter == 5; theta=1; endif;

rhoiter = 1;
do while (rhoiter <= 7);

if rhoiter == 1; lambda=2; endif;
if rhoiter == 2; lambda=1; endif;
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if rhoiter == 3; lambda=.5; endif;
if rhoiter == 4; lambda=0; endif;
if rhoiter == 5; lambda=-.5; endif;
if rhoiter == 6; lambda=-1; endif;
if rhoiter == 7; lambda=-2; endif;

/* Proportion */
giter = 2;
do while (giter <= 2);
/* Conrols censoring */
if giter == 1; gamm = { -1 , 1 }; endif;
if giter == 2; gamm = { 0 , 1 }; endif;
if giter == 3; gamm = { 1 , 1 }; endif;

/* stuff to make the rf computation faster */
/* Here is where I overidentify if needed */
x13=xm[.,1:3];
xtxinv=invpd(x13’*x13);
px=x13*xtxinv*x13’;
mx=eye(nn)-px;

x1=xm[.,1];
p1=x1*x1’./rows(x1);
m1=eye(nn)-p1;

x12=xm[.,1:2];

/* Sample size, k, degrees of freedom */
k=cols(x12)+1;
df=rows(x12)-k;

omeg = sqrt(1+(1+lambda)^2);

/* Begin Monte Carlo */
ii=1; o1=0;
do while ii le nmc;
over:
if retcode == 1; o1=o1+1; endif;
retcode=0;

/* Generate Errors */
{errors,state} = rndKMn(nn,2,state);
v = errors[.,1];
u = lambda * v + errors[.,2] ;
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/* Generate endogenous variable */
y2 = theta.*(x13*pies[1:3])+v;

/* Generate latent variable */
y1star = x12*gamm+u;
y1 = (y1star .>= 0); /* censoring vector;*/
n = sumc(y1);
p = meanc(y1);
mfx = pdfn(cdfni(p));
/* Generate variables for Probit */
w=y2~x12;
wtwinv=invpd(w’w);

/* Probit */
{gam1,vgam,retcode}=nr(w,y1);
if retcode ne 0; goto over; endif;
bmat[ii,2]=gam1[1];
se1=(sqrt(diag(vgam)))’;
smat1[ii,2]=(se1[1]);
tmat0[ii,2]=gam1[1]/se1[1];

/* some stats */
R2=y2’*px*y2/y2’y2;
sseu=y2’*mx*y2;
sser=y2’*m1*y2;
F=(sser-sseu)*(nn-cols(x13))/((sseu)*(cols(x13)-1));

/* IV Probit */
what=px*w;

{gam2,vgam2,retcode}=nr(what,y1);
if retcode ne 0; goto over; endif;
bmat[ii,3]=gam2[1]*omeg;
se2=(sqrt(diag(vgam2)))’;
smat1[ii,3]=se2[1];
tmat0[ii,3]=gam2[1]/se2[1];

/* 2SIV Probit
{gam3,vgam3,retcode}=nr(what~mx*y2,y1);
if retcode ne 0; goto over; endif;
bmat[ii,5]=gam3[1];
se3=(sqrt(diag(vgam3)))’;
smat1[ii,5]=se3[1];
tmat0[ii,5]=gam3[1]/se3[1];
*/
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/* 2SCML Probit */
/* eq. (3.5) */
{gam7,vgam7,retcode}=nr(w~mx*y2,y1);
bmat[ii,7]=gam7[1];
se7=(sqrt(diag(vgam7)))’;
smat1[ii,7]=se7[1];
tmat0[ii,7]=gam7[1]/se7[1];

/* Iwata VI 1 */ ;
invwpzw=invpd(w’px*w);
gam4 = invwpzw*w’*px*y1;
bmat[ii,4]=gam4[1]./mfx;
eivhat = y1-w*gam4;
cov = invwpzw*w’*px*diagrv(eye(rows(eivhat)),eivhat.^2)*px*w*invwpzw;
se4=(sqrt(diag(cov)))’;
smat1[ii,4]=se4[1];
tmat0[ii,4]=gam4[1]/se4[1];

/* AGLS */
{gam5,segam5,gam3a} = agls(y1,w,x13,1);
bmat[ii,6]=gam5[1];
smat1[ii,6]=segam5[1];
tmat0[ii,6]=gam5[1]/segam5[1];

/* Pretest */
k7=rows(gam7);
tv = gam7[k7]/se7[k7];
if abs(tv) > 1.645;
gam8=gam7[1];
else;
gam8=gam1[1];
endif;
bmat[ii,8]=gam8;
/* Estimate the Probit model using LS */
b=wtwinv*w’y1;
ehat=y1-w*b;
sig2=ehat’ehat/df;
covb=sig2*wtwinv;
seb=sqrt(diag(covb))’;
smat1[ii,1]=seb[1];
tmat0[ii,1]=(b[1])/seb[1];

/* Save LS and the tratio */
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bmat[ii,1]=b[1]./mfx;

/* Save other statistics */
otherstat[ii,1]=n;
otherstat[ii,2]=p;
otherstat[ii,3]=R2;
otherstat[ii,4]=F;

ii=ii+1;
endo;
"over " o1;
/* Bias of LS and IV estimators */
meanb=meanc(bmat);
means=meanc(smat1);
meant0=meanc(tmat0);

/* Critical Values */
xc = msort(tmat1);
cl = critl(xc,.05);
cu = critu(xc,.05);

/* */
xb=gamm[1]~theta~lambda~omeg~meanb’;
xs=gamm[1]~theta~lambda~omeg~means’;
v0 = abs(tmat0) .> 1.645;
t0=gamm[1]~theta~lambda~omeg~meanc(v0)’;
MCse=gamm[1]~theta~lambda~omeg~stdc(bmat)’./sqrt(nmc);
crl=gamm[1]~theta~lambda~omeg~cl;
cru=gamm[1]~theta~lambda~omeg~cu;

xbmat=xbmat|xb;
semat=xsmat|xs;
t0mat=t0mat|t0;
mcsemat=mcsemat|mcse;
othermat=othermat|(meanc(otherstat))’;
crlmat=crlmat|crl;
crumat=crumat|cru;

giter = giter + 1;
endo;
rhoiter = rhoiter + 1;
endo;
rhoxiter = rhoxiter + 1;
endo;
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format /m1 /rd 16,3;
" Censoring theta lambda Omega ols probit ivp Iwata1 2siv agls ";

"coeffs ";
xbmat;

" Censoring theta lambda Omega ols probit ivp Iwata1 2siv agls ";

"SE ";
semat;

" Censoring theta lambda Omega ols probit ivp Iwata1 2siv agls ";

"size ";
t0mat;

" Censoring theta lambda Omega ols probit ivp Iwata1 2siv agls ";

"MC SE ";
mcsemat;

" Censoring theta lambda Omega ols probit ivp Iwata1 2siv agls ";

"crl and cru ";
crlmat;
crumat;

"Some Stats";
t0mat[.,1:4]~Othermat;

proc errn(xm,corrmat);
local cd, nn, xx, xe, er;
cd = chol(corrmat);
nn=rows(xm);
{xx,state} = rndKMn(nn,1,state);
xx = xm~xx;
xe=xx*cd;
xe=xe[.,4];
retp(xe);
endp;

proc errn2(xm,corrmat);
local cd, nn, xx, xe, er;
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cd = chol(corrmat);
nn=rows(xm);
{xx,state} = rndKMn(nn,2,state);
xx = xm~xx;
xe=xx*cd;
xe=xe[.,5:6];
retp(xe);
endp;

proc(3) = agls(y,x,z,c);
local pz, mz, b, xhat, rho, zhat, alpha, xs, gam2siv, vgamsiv, retcode,

t1, xstar, lam, pihat, s2, v2, omega, jinv, k, d, delt, cov, se, J,vhat;
/* v is 0,1
** z are instruments
** x is the endog regressor (w in the probit model)
*/
/* Step 1: ls reduced form */
k=cols(z);
pz = z*invpd(z’z)*z’;
mz = eye(rows(z))-pz;
d=invpd(z’z)*z’x;
xhat=pz*x;
vhat = mz*x[.,c];

/* Step 2: probit rf */
{alpha,Jinv,retcode}=nr(z~vhat,y);
jinv=jinv[1:k,1:k];
lam = alpha[k+1];
alpha = alpha[1:k,.];

/* Step 3: 2siv */
xs = xhat~vhat;
{gam2siv,vgamsiv,retcode}=nr(xs,y);
rho = lam-gam2siv[2];

/* Step 4: v2 inv(x’x/n) */
xstar = x[.,c]*rho;
pihat = invpd(z’z)*z’*xstar;
s2=(xstar-z*pihat)’(xstar-z*pihat)/(rows(z)-cols(z));
v2=s2*invpd(z’z);
@ other[ii,.]=rho~s2; @

/* Step 5 Omega */
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omega = jinv + v2;

/* Step 6 AGLS */
delt =invpd(d’*invpd(omega)*d)*d’*invpd(omega)*alpha;
cov=invpd(d’invpd(omega)*d);
se=sqrt(diag(cov));
retp(delt,se,gam2siv);
endp;

/* This computes the observation by observation derivatives.
** Column summation yields the function below.
*/

proc (1) = Zgrad(beta,x,y);
local zhat, pdf, cdf, del;
zhat = x*beta;

pdf = pdfn(zhat);
cdf = cdfn(zhat);
del=(y-cdf).*pdf./(cdf.*(1-cdf));
del = (del.*.ones(1,cols(x)).*x);
retp(del);

endp;

/* Calculate gradient */

fn grad(beta,x,y)= sumc(zgrad(beta,x,y));

/* Calculate Hessian */

proc (1) = hessi(beta,x,y);
local k, zhat, pdf, cdf, d, H;

k = cols(x);
zhat = x*beta;
pdf = pdfn(zhat);
cdf = cdfn(zhat);
d = y.*((pdf+zhat.*cdf)/cdf.^2) + (1-y).*((pdf - zhat.*(1-cdf))/(1-cdf).^2);
d = pdf.*d;
H = -x’*((ones(1,k).*.d).*x);
retp(H);

endp;

/* Calculate Outer Product of the Gradients matrix (BHHH) */

proc (1) = opg(beta,x,y);
local k, zhat, pdf, cdf, d, H;
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h=zgrad(beta,x,y)’*zgrad(beta,x,y);
retp(H);

endp;

proc (3) = NR(x,y);
local jj, b, retcode, vgam ;
retcode=0;
jj=1;
b=invpd(x’x)*x’y;
do while abs(maxc(grad(b,x,y))) > .00001 ;
b=b+invpd(-hessi(b,x,y))*grad(b,x,y);
if jj ge 100; b=0; vgam=eye(cols(x)); retcode=1; goto bomb; endif;
jj=jj+1;
endo;

vgam=invpd(-hessi(b,x,y));
bomb:
retp(b,vgam,retcode);
endp;

/* Critl returns the lower pc percentile of the matrix, MAT */

proc (1) = critl(mat,pc);
local n,row,mm;

N=ROWs(MAT);
ROW=ceil(PC*n);
MM=mat[ROW,.];
retp(mm);

endp;

/* Critu returns the upper pc percentile of the matrix, MAT */

proc (1) = critu(mat,pc);
local n, row, mm;

N=ROWs(MAT);
ROW=ceil((1-PC)*n)+1;
MM=mat[ROW,.];
retp(mm);

endp;

proc (1) = msort(mat);
local n,m,boot,b,s,ii;

n=rows(mat);
m=cols(mat);
boot = zeros(n,m);
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ii = 1;
do while ii le m;
b = mat[.,ii];
s = sortc(b,1);
boot[.,ii]=s;
ii = ii + 1;
endo;
retp(boot);

endp;

9. Stata Code

clear
set seed 18079741
set more off
set mem 100m
set obs 1000
set matsize 1000
local B = 1000
matrix Bvals = J(‘B’, 2, 0)
matrix pvals = J(‘B’, 2, 0)
matrix pwvals1 = J(‘B’, 6, 0)
matrix pwvals2 = J(‘B’, 6, 0)

matrix covx = J(3,3,.5)
matrix covx[1,1]=1
matrix covx[2,2]=1
matrix covx[3,3]=1
corr2data x1 x2 x3, corr(covx) cstorage(full)

mkmat x1 x2 x3

forvalues b = 1/‘B’ {
drop _all
quietly set obs 1000
gen cons = 1
gen e = invnormal(uniform())
gen v = invnormal(uniform())
gen u = .5*v + e

svmat x1
svmat x2
svmat x3
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gen y2 = .1*(x1 + x2 - x3) + v
gen y1 = x1 + u
gen y = 0
qui replace y =1 if y1>0

qui ivprobit y (y2=x2) x1, twostep
matrix betas1 = e(b)
matrix Bvals[‘b’,1] = betas1[1,1]

qui testparm y2
matrix pvals[‘b’,1] = r(p)

qui ivprobit y (y2=x2) x1, difficult
matrix betas2 = e(b)
matrix Bvals[‘b’,2] = betas2[1,1]

qui testparm y2
matrix pvals[‘b’,2] = r(p)
}

drop _all
svmat Bvals
svmat pvals
summ *, det
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Table 1a Bias of each estimator based on samples of size 200.  Monte Carlo used 1000 samples.  
The model is just identified.  The approximate proportion of 1's in each sample is .5.

θ λ ols probit IV probit Linear IV agls tscml pretest
0.05 2 0.818 2.103 ‐6.807 ‐1.533 ‐1.858 ‐1.858 0.699
0.05 1 0.575 1.034 2.934 1.005 1.572 1.572 1.082
0.05 0.5 0.326 0.510 ‐6.885 ‐3.057 ‐3.717 ‐3.717 ‐0.600
0.05 0 0.004 0.006 ‐12.681 ‐7.284 ‐8.732 ‐8.732 0.105
0.05 ‐0.5 ‐0.330 ‐0.515 ‐5.085 ‐2.915 ‐4.721 ‐4.721 ‐0.210
0.05 ‐1 ‐0.573 ‐1.028 ‐0.853 ‐0.834 ‐0.302 ‐0.302 ‐0.700
0.05 ‐2 ‐0.817 ‐2.078 ‐1.478 ‐0.972 ‐2.429 ‐2.429 ‐1.980
0.1 2 0.813 2.043 22.393 6.184 7.702 7.702 8.046
0.1 1 0.572 1.023 3.000 0.041 ‐0.423 ‐0.423 0.446
0.1 0.5 0.324 0.509 1.580 0.473 0.960 0.960 0.628
0.1 0 ‐0.001 ‐0.001 12.316 6.766 8.767 8.767 0.007
0.1 ‐0.5 ‐0.328 ‐0.510 ‐0.196 ‐0.182 ‐0.405 ‐0.405 ‐0.324
0.1 ‐1 ‐0.570 ‐1.020 0.251 0.095 0.221 0.221 ‐0.217
0.1 ‐2 ‐0.813 ‐2.037 ‐0.069 ‐0.052 ‐0.285 ‐0.285 ‐1.023

0.25 2 0.785 1.848 ‐0.625 ‐0.188 ‐0.508 ‐0.508 ‐0.482
0.25 1 0.547 0.966 ‐0.286 ‐0.137 ‐0.199 ‐0.199 ‐0.010
0.25 0.5 0.312 0.488 ‐0.127 ‐0.104 ‐0.075 ‐0.075 0.189
0.25 0 ‐0.005 ‐0.004 0.027 ‐0.057 0.018 0.018 ‐0.016
0.25 ‐0.5 ‐0.317 ‐0.487 0.150 0.040 0.143 0.143 ‐0.111
0.25 ‐1 ‐0.550 ‐0.965 0.183 0.111 0.273 0.273 0.049
0.25 ‐2 ‐0.782 ‐1.840 0.288 0.175 0.456 0.456 0.400
0 5 2 0 694 1 390 0 086 0 030 0 053 0 053 0 053

Design Estimator

0.5 2 0.694 1.390 ‐0.086 ‐0.030 ‐0.053 ‐0.053 ‐0.053
0.5 1 0.485 0.809 ‐0.065 ‐0.039 ‐0.040 ‐0.040 ‐0.031
0.5 0.5 0.274 0.425 ‐0.045 ‐0.041 ‐0.029 ‐0.029 0.055
0.5 0 ‐0.005 ‐0.002 ‐0.005 ‐0.031 ‐0.004 ‐0.004 ‐0.006
0.5 ‐0.5 ‐0.283 ‐0.427 0.014 ‐0.014 0.013 0.013 ‐0.070
0.5 ‐1 ‐0.487 ‐0.807 0.036 0.015 0.049 0.049 0.040
0.5 ‐2 ‐0.696 ‐1.385 0.030 0.013 0.056 0.056 0.056
1 2 0.478 0.738 0.005 ‐0.001 0.004 0.004 0.004
1 1 0.335 0.505 ‐0.003 ‐0.008 ‐0.002 ‐0.002 ‐0.002
1 0.5 0.186 0.280 0.001 ‐0.011 0.001 0.001 0.010
1 0 ‐0.004 0.002 0.009 ‐0.010 0.006 0.006 0.004
1 ‐0.5 ‐0.198 ‐0.285 0.007 ‐0.006 0.007 0.007 ‐0.001
1 ‐1 ‐0.338 ‐0.498 0.011 0.001 0.016 0.016 0.016
1 ‐2 ‐0.480 ‐0.730 0.014 0.006 0.028 0.028 0.028



Table 1b Bias of each estimator based on samples of size 1000.  Monte Carlo used 1000 samples.  
The model is just identified.  The approximate proportion of 1's in each sample is .5.

θ λ ols probit IV probit Linear IV agls tscml pretest
0.05 2 0.811 2.008 1.397 0.382 0.551 0.551 0.551
0.05 1 0.572 1.008 0.474 0.089 0.212 0.212 0.212
0.05 0.5 0.327 0.501 ‐0.158 ‐0.056 ‐0.310 ‐0.310 ‐0.310
0.05 0 0.000 0.000 1.266 0.204 0.895 0.895 0.895
0.05 ‐0.5 ‐0.328 ‐0.501 ‐1.216 ‐0.770 ‐1.386 ‐1.386 ‐1.386
0.05 ‐1 ‐0.569 ‐1.001 ‐10.904 ‐7.669 ‐14.615 ‐14.615 ‐14.615
0.05 ‐2 ‐0.811 ‐2.011 ‐1.135 ‐0.761 ‐1.850 ‐1.850 ‐1.850
0.1 2 0.808 1.982 ‐0.229 ‐0.087 ‐0.196 ‐0.196 ‐0.196
0.1 1 0.568 0.997 ‐3.672 ‐1.381 ‐1.869 ‐1.869 ‐1.869
0.1 0.5 0.326 0.499 ‐0.923 ‐0.448 ‐0.549 ‐0.549 ‐0.549
0.1 0 ‐0.002 ‐0.002 ‐0.092 ‐0.112 ‐0.065 ‐0.065 ‐0.065
0.1 ‐0.5 ‐0.328 ‐0.501 ‐0.072 ‐0.075 ‐0.095 ‐0.095 ‐0.095
0.1 ‐1 ‐0.567 ‐0.993 0.136 0.072 0.184 0.184 0.184
0.1 ‐2 ‐0.809 ‐1.981 ‐0.208 ‐0.137 ‐0.227 ‐0.227 ‐0.227

0.25 2 0.778 1.782 ‐0.040 ‐0.017 ‐0.029 ‐0.029 ‐0.029
0.25 1 0.547 0.946 ‐0.023 ‐0.022 ‐0.017 ‐0.017 ‐0.017
0.25 0.5 0.314 0.481 ‐0.026 ‐0.030 ‐0.016 ‐0.016 ‐0.016
0.25 0 ‐0.002 ‐0.001 0.001 ‐0.021 0.001 0.001 0.001
0.25 ‐0.5 ‐0.316 ‐0.481 0.023 ‐0.004 0.023 0.023 0.023
0.25 ‐1 ‐0.547 ‐0.944 0.015 ‐0.001 0.021 0.021 0.021
0.25 ‐2 ‐0.779 ‐1.779 0.039 0.019 0.058 0.058 0.058
0 5 2 0 690 1 352 0 003 0 002 0 002 0 002 0 002

Design Estimator

0.5 2 0.690 1.352 0.003 ‐0.002 0.002 0.002 0.002
0.5 1 0.484 0.795 ‐0.002 ‐0.007 0.000 0.000 0.000
0.5 0.5 0.278 0.418 ‐0.001 ‐0.010 ‐0.001 ‐0.001 ‐0.001
0.5 0 ‐0.002 0.000 ‐0.003 ‐0.012 ‐0.002 ‐0.002 ‐0.002
0.5 ‐0.5 ‐0.279 ‐0.417 0.005 ‐0.005 0.005 0.005 0.005
0.5 ‐1 ‐0.486 ‐0.796 ‐0.003 ‐0.009 ‐0.003 ‐0.003 ‐0.003
0.5 ‐2 ‐0.689 ‐1.344 0.010 0.004 0.014 0.014 0.014
1 2 0.474 0.719 ‐0.002 ‐0.002 ‐0.004 ‐0.004 ‐0.004
1 1 0.331 0.491 ‐0.002 ‐0.004 0.000 0.000 0.000
1 0.5 0.190 0.279 ‐0.002 ‐0.005 ‐0.001 ‐0.001 ‐0.001
1 0 ‐0.001 0.002 0.004 ‐0.004 0.003 0.003 0.003
1 ‐0.5 ‐0.193 ‐0.277 0.000 ‐0.005 0.000 0.000 0.000
1 ‐1 ‐0.334 ‐0.492 0.002 ‐0.002 0.003 0.003 0.003
1 ‐2 ‐0.475 ‐0.721 0.000 ‐0.002 ‐0.001 ‐0.001 ‐0.001



Table 1c Bias of each estimator based on samples of size 200.  Monte Carlo used 1000 samples.  
The model is overidentified.  The approximate proportion of 1's in each sample is .5.

θ λ ols probit IV probit Linear IV agls tscml pretest
0.050 2.000 0.830 2.078 2.376 0.668 1.707 1.692 1.789
0.050 1.000 0.592 1.030 0.989 0.302 0.642 0.650 0.803
0.050 0.500 0.342 0.515 0.613 0.222 0.353 0.352 0.388
0.050 0.000 ‐0.002 ‐0.003 0.039 ‐0.023 0.027 0.029 ‐0.008
0.050 ‐0.500 ‐0.342 ‐0.511 ‐0.428 ‐0.322 ‐0.431 ‐0.434 ‐0.484
0.050 ‐1.000 ‐0.591 ‐1.033 ‐0.525 ‐0.427 ‐0.776 ‐0.767 ‐0.787
0.050 ‐2.000 ‐0.828 ‐2.072 ‐0.996 ‐0.649 ‐1.701 ‐1.694 ‐1.931
0.100 2.000 0.823 2.047 1.227 0.333 0.946 0.938 1.164
0.100 1.000 0.587 1.018 0.598 0.176 0.374 0.374 0.564
0.100 0.500 0.339 0.508 0.287 0.069 0.163 0.163 0.316
0.100 0.000 0.000 0.001 ‐0.015 ‐0.073 ‐0.010 ‐0.011 ‐0.034
0.100 ‐0.500 ‐0.340 ‐0.504 ‐0.167 ‐0.161 ‐0.155 ‐0.156 ‐0.376
0.100 ‐1.000 ‐0.587 ‐1.016 ‐0.255 ‐0.222 ‐0.396 ‐0.395 ‐0.683
0.100 ‐2.000 ‐0.823 ‐2.034 ‐0.456 ‐0.315 ‐0.755 ‐0.740 ‐0.951
0.250 2.000 0.781 1.762 0.007 ‐0.007 ‐0.006 ‐0.008 0.003
0.250 1.000 0.557 0.951 0.008 ‐0.018 0.007 0.007 0.128
0.250 0.500 0.321 0.480 0.009 ‐0.030 0.003 0.004 0.173
0.250 0.000 ‐0.003 0.000 0.010 ‐0.036 0.006 0.007 ‐0.004
0.250 ‐0.500 ‐0.325 ‐0.482 ‐0.008 ‐0.038 ‐0.010 ‐0.010 ‐0.190
0.250 ‐1.000 ‐0.559 ‐0.944 0.005 ‐0.020 0.008 0.009 ‐0.120
0.250 ‐2.000 ‐0.780 ‐1.768 0.038 0.015 0.039 0.041 0.032
0 500 2 000 0 666 1 240 0 000 0 004 0 002 0 004 0 004

Design Estimator

0.500 2.000 0.666 1.240 0.000 ‐0.004 ‐0.002 ‐0.004 ‐0.004
0.500 1.000 0.471 0.752 ‐0.003 ‐0.013 ‐0.003 ‐0.003 0.000
0.500 0.500 0.269 0.400 ‐0.005 ‐0.019 ‐0.005 ‐0.004 0.056
0.500 0.000 ‐0.005 0.000 ‐0.004 ‐0.022 ‐0.004 ‐0.003 0.002
0.500 ‐0.500 ‐0.281 ‐0.410 ‐0.007 ‐0.023 ‐0.010 ‐0.009 ‐0.072
0.500 ‐1.000 ‐0.478 ‐0.759 0.010 ‐0.004 0.017 0.017 0.014
0.500 ‐2.000 ‐0.664 ‐1.239 0.010 0.001 0.009 0.009 0.009
1.000 2.000 0.414 0.592 0.002 ‐0.002 ‐0.001 ‐0.001 ‐0.001
1.000 1.000 0.293 0.421 0.000 ‐0.006 ‐0.002 ‐0.002 ‐0.002
1.000 0.500 0.168 0.245 ‐0.001 ‐0.009 ‐0.001 ‐0.001 0.003
1.000 0.000 ‐0.006 ‐0.002 ‐0.002 ‐0.011 ‐0.002 ‐0.002 ‐0.002
1.000 ‐0.500 ‐0.177 ‐0.246 0.001 ‐0.008 0.001 0.001 ‐0.003
1.000 ‐1.000 ‐0.301 ‐0.431 ‐0.007 ‐0.011 ‐0.011 ‐0.011 ‐0.011
1.000 ‐2.000 ‐0.417 ‐0.601 0.000 ‐0.002 0.003 0.003 0.003



Table 1d Bias of each estimator based on samples of size 1000.  Monte Carlo used 1000 samples.  
The model is overidentified.  The approximate proportion of 1's in each sample is .5.

θ λ ols probit IV probit Linear IV agls tscml pretest
0.05 2 0.817 2.007 0.873 0.276 0.649 0.650 0.953
0.05 1 0.578 1.005 0.415 0.220 0.274 0.275 0.515
0.05 0.5 0.333 0.500 0.214 0.172 0.116 0.117 0.327
0.05 0 0.000 0.000 ‐0.077 0.073 ‐0.054 ‐0.054 0.005
0.05 ‐0.5 ‐0.333 ‐0.502 ‐0.086 0.044 ‐0.088 ‐0.088 ‐0.255
0.05 ‐1 ‐0.578 ‐1.003 ‐0.282 ‐0.171 ‐0.400 ‐0.401 ‐0.684
0.05 ‐2 ‐0.815 ‐2.002 ‐0.413 ‐0.243 ‐0.694 ‐0.695 ‐0.930
0.1 2 0.811 1.966 0.270 0.094 0.171 0.171 0.208
0.1 1 0.574 0.994 0.028 0.059 0.009 0.010 0.211
0.1 0.5 0.332 0.499 ‐0.019 0.062 ‐0.007 ‐0.007 0.216
0.1 0 0.001 ‐0.001 ‐0.006 0.080 ‐0.004 ‐0.004 ‐0.007
0.1 ‐0.5 ‐0.329 ‐0.496 0.016 0.079 0.023 0.023 ‐0.198
0.1 ‐1 ‐0.572 ‐0.990 ‐0.001 0.045 0.006 0.005 ‐0.171
0.1 ‐2 ‐0.811 ‐1.968 0.041 0.044 0.075 0.074 0.040

0.25 2 0.775 1.739 0.008 0.009 0.009 0.010 0.010
0.25 1 0.548 0.927 ‐0.033 0.007 ‐0.018 ‐0.018 ‐0.017
0.25 0.5 0.319 0.476 ‐0.008 0.025 ‐0.005 ‐0.005 0.035
0.25 0 0.000 ‐0.002 0.000 0.034 0.000 0.000 0.001
0.25 ‐0.5 ‐0.315 ‐0.473 ‐0.001 0.027 ‐0.001 ‐0.001 ‐0.044
0.25 ‐1 ‐0.546 ‐0.928 ‐0.001 0.018 ‐0.001 ‐0.001 ‐0.001
0.25 ‐2 ‐0.774 ‐1.730 0.002 0.008 0.002 0.002 0.002
0 5 2 0 667 1 248 0 015 0 008 0 011 0 011 0 011

Design Estimator

0.5 2 0.667 1.248 0.015 0.008 0.011 0.011 0.011
0.5 1 0.473 0.753 0.000 0.009 ‐0.001 ‐0.001 ‐0.001
0.5 0.5 0.274 0.399 0.000 0.014 0.001 0.001 0.001
0.5 0 0.003 ‐0.001 0.003 0.018 0.002 0.002 ‐0.001
0.5 ‐0.5 ‐0.269 ‐0.398 0.002 0.015 0.002 0.002 0.002
0.5 ‐1 ‐0.469 ‐0.752 ‐0.002 0.007 ‐0.004 ‐0.004 ‐0.004
0.5 ‐2 ‐0.667 ‐1.243 0.000 0.004 0.000 0.000 0.000
1 2 0.429 0.617 ‐0.004 0.001 ‐0.003 ‐0.003 ‐0.003
1 1 0.305 0.433 0.002 0.005 0.002 0.002 0.002
1 0.5 0.178 0.249 0.001 0.008 0.001 0.001 0.001
1 0 0.003 ‐0.001 ‐0.004 0.006 ‐0.003 ‐0.003 ‐0.001
1 ‐0.5 ‐0.171 ‐0.248 0.001 0.008 0.000 0.000 0.000
1 ‐1 ‐0.300 ‐0.432 0.001 0.006 0.002 0.002 0.002
1 ‐2 ‐0.428 ‐0.617 ‐0.002 0.000 ‐0.003 ‐0.003 ‐0.003



Table 2a The size of 10% nominal tests.  Only Linear IV and agls use
consistent standard errors.  N=200, mc=1000, just identified.

θ λ ols probit IV probit Linear IV agls tscml
0.05 2 1.000 1.000 0.099 0.130 0.141 0.379
0.05 1 1.000 1.000 0.096 0.046 0.110 0.197
0.05 0.5 0.996 0.998 0.097 0.011 0.086 0.124
0.05 0 0.099 0.099 0.104 0.002 0.092 0.107
0.05 ‐0.5 0.998 0.997 0.092 0.025 0.086 0.123
0.05 ‐1 1.000 1.000 0.082 0.049 0.108 0.194
0.05 ‐2 1.000 1.000 0.096 0.115 0.121 0.365
0.1 2 1.000 1.000 0.089 0.108 0.114 0.339
0.1 1 1.000 1.000 0.092 0.045 0.102 0.193
0.1 0.5 0.999 0.999 0.103 0.032 0.105 0.137
0.1 0 0.099 0.088 0.110 0.008 0.102 0.111
0.1 ‐0.5 0.997 0.998 0.087 0.022 0.090 0.114
0.1 ‐1 1.000 1.000 0.091 0.067 0.110 0.192
0.1 ‐2 1.000 1.000 0.108 0.111 0.124 0.355

0.25 2 1.000 1.000 0.112 0.084 0.139 0.343
0.25 1 1.000 1.000 0.104 0.084 0.141 0.216
0.25 0.5 0.999 0.999 0.091 0.049 0.090 0.118
0.25 0 0.105 0.106 0.092 0.052 0.089 0.094
0 25 0 5 0 999 0 999 0 089 0 060 0 098 0 125

Design Estimator

0.25 ‐0.5 0.999 0.999 0.089 0.060 0.098 0.125
0.25 ‐1 1.000 1.000 0.085 0.083 0.117 0.188
0.25 ‐2 1.000 1.000 0.088 0.105 0.127 0.369
0.5 2 1.000 1.000 0.085 0.085 0.114 0.348
0.5 1 1.000 1.000 0.093 0.084 0.114 0.192
0.5 0.5 0.994 0.995 0.115 0.097 0.127 0.156
0.5 0 0.097 0.101 0.113 0.094 0.111 0.114
0.5 ‐0.5 0.998 0.995 0.090 0.106 0.099 0.116
0.5 ‐1 1.000 1.000 0.099 0.098 0.122 0.193
0.5 ‐2 1.000 1.000 0.086 0.105 0.129 0.386
1 2 1.000 1.000 0.086 0.102 0.139 0.370
1 1 1.000 1.000 0.087 0.095 0.114 0.200
1 0.5 0.953 0.957 0.091 0.094 0.102 0.123
1 0 0.108 0.101 0.103 0.101 0.098 0.105
1 ‐0.5 0.976 0.966 0.095 0.111 0.104 0.132
1 ‐1 1.000 1.000 0.089 0.104 0.115 0.202
1 ‐2 1.000 1.000 0.073 0.092 0.112 0.379



Table 2b Compute rejection rate for 10% nominal t‐tests.  Standard errors for 
agls and Linear IV are consistent.  N=1000, mc=1000, model is just identified.

θ λ ols probit IV probit Linear IV agls tscml
0.05 2 1.000 1.000 0.106 0.102 0.116 0.364
0.05 1 1.000 1.000 0.086 0.051 0.103 0.180
0.05 0.5 1.000 1.000 0.097 0.024 0.108 0.132
0.05 0 0.107 0.108 0.102 0.005 0.098 0.103
0.05 ‐0.5 1.000 1.000 0.100 0.036 0.107 0.134
0.05 ‐1 1.000 1.000 0.079 0.062 0.101 0.178
0.05 ‐2 1.000 1.000 0.085 0.110 0.124 0.348
0.1 2 1.000 1.000 0.090 0.090 0.121 0.359
0.1 1 1.000 1.000 0.080 0.062 0.101 0.173
0.1 0.5 1.000 1.000 0.091 0.044 0.096 0.115
0.1 0 0.092 0.101 0.122 0.043 0.120 0.121
0.1 ‐0.5 1.000 1.000 0.105 0.057 0.104 0.131
0.1 ‐1 1.000 1.000 0.098 0.084 0.119 0.192
0.1 ‐2 1.000 1.000 0.089 0.088 0.129 0.345

0.25 2 1.000 1.000 0.082 0.086 0.122 0.339
0.25 1 1.000 1.000 0.078 0.070 0.113 0.184
0.25 0.5 1.000 1.000 0.103 0.076 0.118 0.137
0.25 0 0.101 0.112 0.111 0.091 0.111 0.111
0 25 0 5 1 000 1 000 0 095 0 089 0 112 0 130

Design Estimator

0.25 ‐0.5 1.000 1.000 0.095 0.089 0.112 0.130
0.25 ‐1 1.000 1.000 0.086 0.089 0.112 0.190
0.25 ‐2 1.000 1.000 0.080 0.077 0.116 0.327
0.5 2 1.000 1.000 0.077 0.086 0.130 0.343
0.5 1 1.000 1.000 0.069 0.071 0.102 0.172
0.5 0.5 1.000 1.000 0.110 0.091 0.121 0.139
0.5 0 0.094 0.099 0.106 0.097 0.104 0.106
0.5 ‐0.5 1.000 1.000 0.092 0.092 0.096 0.116
0.5 ‐1 1.000 1.000 0.087 0.102 0.110 0.198
0.5 ‐2 1.000 1.000 0.089 0.089 0.118 0.351
1 2 1.000 1.000 0.087 0.096 0.131 0.351
1 1 1.000 1.000 0.079 0.080 0.108 0.177
1 0.5 1.000 1.000 0.089 0.093 0.107 0.124
1 0 0.099 0.102 0.097 0.090 0.096 0.096
1 ‐0.5 1.000 1.000 0.098 0.092 0.107 0.134
1 ‐1 1.000 1.000 0.090 0.104 0.122 0.203
1 ‐2 1.000 1.000 0.093 0.110 0.141 0.382



Table 2c The size of 10% nominal tests.  Only Linear IV and agls use
consistent standard errors.  N=200, mc=1000, model is overidentified.

θ λ ols probit IV probit Linear IV agls tscml
0.050 2.000 1.000 1.000 0.143 0.235 0.198 0.460
0.050 1.000 1.000 1.000 0.129 0.107 0.156 0.258
0.050 0.500 1.000 1.000 0.123 0.047 0.137 0.163
0.050 0.000 0.098 0.086 0.111 0.007 0.102 0.113
0.050 ‐0.500 1.000 0.999 0.122 0.052 0.125 0.159
0.050 ‐1.000 1.000 1.000 0.113 0.124 0.140 0.238
0.050 ‐2.000 1.000 1.000 0.137 0.232 0.195 0.442
0.100 2.000 1.000 1.000 0.134 0.238 0.198 0.451
0.100 1.000 1.000 1.000 0.111 0.099 0.129 0.223
0.100 0.500 0.999 0.998 0.100 0.046 0.099 0.122
0.100 0.000 0.105 0.111 0.106 0.020 0.099 0.111
0.100 ‐0.500 0.997 0.997 0.096 0.063 0.099 0.117
0.100 ‐1.000 1.000 1.000 0.095 0.118 0.124 0.204
0.100 ‐2.000 1.000 1.000 0.111 0.209 0.156 0.395
0.250 2.000 1.000 1.000 0.087 0.118 0.128 0.370
0.250 1.000 1.000 1.000 0.115 0.121 0.132 0.221
0.250 0.500 1.000 0.999 0.103 0.085 0.108 0.133
0.250 0.000 0.108 0.115 0.113 0.076 0.110 0.115
0 250 0 500 0 999 0 999 0 090 0 096 0 100 0 127

Design Estimator

0.250 ‐0.500 0.999 0.999 0.090 0.096 0.100 0.127
0.250 ‐1.000 1.000 1.000 0.088 0.123 0.112 0.209
0.250 ‐2.000 1.000 1.000 0.092 0.144 0.132 0.361
0.500 2.000 1.000 1.000 0.090 0.098 0.124 0.370
0.500 1.000 1.000 1.000 0.094 0.091 0.108 0.188
0.500 0.500 0.994 0.996 0.106 0.098 0.111 0.134
0.500 0.000 0.124 0.117 0.096 0.110 0.097 0.101
0.500 ‐0.500 0.997 0.994 0.110 0.109 0.111 0.141
0.500 ‐1.000 1.000 1.000 0.082 0.096 0.108 0.190
0.500 ‐2.000 1.000 1.000 0.091 0.119 0.129 0.365
1.000 2.000 1.000 1.000 0.085 0.100 0.122 0.351
1.000 1.000 1.000 1.000 0.101 0.115 0.118 0.191
1.000 0.500 0.931 0.946 0.108 0.113 0.115 0.139
1.000 0.000 0.115 0.122 0.093 0.098 0.092 0.095
1.000 ‐0.500 0.955 0.951 0.089 0.100 0.095 0.121
1.000 ‐1.000 1.000 1.000 0.094 0.122 0.113 0.196
1.000 ‐2.000 1.000 1.000 0.084 0.095 0.125 0.357



Table 2d The size of 10% nominal tests.  Standard errors of agls and Linear IV
are consistent.  N=1000, mc=1000, model is overidentified.

θ λ ols probit IV probit Linear IV agls tscml
0.05 2 1.000 1.000 0.122 0.206 0.147 0.415
0.05 1 1.000 1.000 0.108 0.133 0.117 0.184
0.05 0.5 1.000 1.000 0.096 0.054 0.110 0.130
0.05 0 0.086 0.084 0.099 0.023 0.100 0.099
0.05 ‐0.5 1.000 1.000 0.106 0.036 0.112 0.135
0.05 ‐1 1.000 1.000 0.085 0.090 0.115 0.195
0.05 ‐2 1.000 1.000 0.135 0.201 0.175 0.398
0.1 2 1.000 1.000 0.100 0.153 0.120 0.341
0.1 1 1.000 1.000 0.091 0.138 0.123 0.199
0.1 0.5 1.000 1.000 0.085 0.083 0.096 0.110
0.1 0 0.111 0.109 0.109 0.065 0.109 0.109
0.1 ‐0.5 1.000 1.000 0.099 0.042 0.104 0.119
0.1 ‐1 1.000 1.000 0.093 0.076 0.131 0.192
0.1 ‐2 1.000 1.000 0.073 0.111 0.123 0.332
0.25 2 1.000 1.000 0.095 0.116 0.155 0.378
0.25 1 1.000 1.000 0.098 0.108 0.126 0.201
0.25 0.5 1.000 1.000 0.097 0.104 0.101 0.128
0.25 0 0.102 0.109 0.095 0.100 0.095 0.095

Design Estimator

0.25 ‐0.5 1.000 1.000 0.097 0.089 0.110 0.128
0.25 ‐1 1.000 1.000 0.108 0.112 0.125 0.207
0.25 ‐2 1.000 1.000 0.098 0.095 0.130 0.365
0.5 2 1.000 1.000 0.089 0.106 0.119 0.344
0.5 1 1.000 1.000 0.085 0.104 0.107 0.179
0.5 0.5 1.000 1.000 0.086 0.101 0.091 0.111
0.5 0 0.089 0.093 0.109 0.106 0.106 0.108
0.5 ‐0.5 1.000 1.000 0.122 0.120 0.121 0.151
0.5 ‐1 1.000 1.000 0.087 0.095 0.112 0.195
0.5 ‐2 1.000 1.000 0.060 0.071 0.094 0.311
1 2 1.000 1.000 0.081 0.097 0.128 0.335
1 1 1.000 1.000 0.095 0.108 0.116 0.187
1 0.5 1.000 1.000 0.114 0.126 0.124 0.148
1 0 0.103 0.107 0.122 0.117 0.120 0.121
1 ‐0.5 1.000 1.000 0.106 0.108 0.122 0.146
1 ‐1 1.000 1.000 0.088 0.102 0.114 0.201
1 ‐2 1.000 1.000 0.096 0.111 0.149 0.372



Table 3a Monte Carlo standard error each estimator based on samples of size 200,  1000 samples.  
The model is just identified.  The approximate proportion of 1's in each sample is .5.

θ λ ols probit IV probit Linear IV agls tscml pretest
0.05 2 0.002 0.010 7.894 1.865 2.939 2.939 1.060
0.05 1 0.002 0.005 2.063 0.715 1.086 1.086 0.712
0.05 0.5 0.002 0.004 3.382 1.599 1.876 1.876 1.116
0.05 0 0.002 0.003 12.405 7.046 8.544 8.544 0.378
0.05 ‐0.5 0.002 0.004 3.882 2.047 3.876 3.876 0.662
0.05 ‐1 0.002 0.005 1.773 1.389 3.186 3.186 0.434
0.05 ‐2 0.002 0.010 0.463 0.292 0.744 0.744 0.559
0.1 2 0.002 0.009 22.052 6.168 8.284 8.284 8.241
0.1 1 0.002 0.005 3.107 0.440 0.918 0.918 0.646
0.1 0.5 0.002 0.004 0.736 0.267 0.452 0.452 0.222
0.1 0 0.002 0.003 12.608 7.070 8.960 8.960 0.108
0.1 ‐0.5 0.002 0.004 0.214 0.113 0.284 0.284 0.086
0.1 ‐1 0.002 0.005 0.755 0.551 1.002 1.002 0.981
0.1 ‐2 0.002 0.009 0.382 0.233 0.625 0.625 0.511

0.25 2 0.002 0.008 0.154 0.044 0.138 0.138 0.139
0.25 1 0.002 0.005 0.075 0.028 0.050 0.050 0.052
0.25 0.5 0.002 0.004 0.063 0.028 0.037 0.037 0.031
0.25 0 0.002 0.003 0.064 0.027 0.045 0.045 0.033

Design Estimator

0.25 0 0.002 0.003 0.064 0.027 0.045 0.045 0.033
0.25 ‐0.5 0.002 0.004 0.033 0.020 0.033 0.033 0.026
0.25 ‐1 0.002 0.005 0.057 0.043 0.085 0.085 0.087
0.25 ‐2 0.002 0.008 0.072 0.046 0.109 0.109 0.107
0.5 2 0.002 0.006 0.024 0.007 0.017 0.017 0.017
0.5 1 0.002 0.004 0.018 0.006 0.011 0.011 0.012
0.5 0.5 0.002 0.003 0.015 0.006 0.010 0.010 0.012
0.5 0 0.002 0.003 0.012 0.006 0.009 0.009 0.006
0.5 ‐0.5 0.002 0.003 0.009 0.006 0.009 0.009 0.011
0.5 ‐1 0.002 0.004 0.008 0.006 0.011 0.011 0.012
0.5 ‐2 0.002 0.006 0.011 0.007 0.017 0.017 0.017
1 2 0.001 0.003 0.011 0.003 0.008 0.008 0.008
1 1 0.002 0.003 0.008 0.003 0.005 0.005 0.005
1 0.5 0.002 0.003 0.007 0.003 0.004 0.004 0.005
1 0 0.002 0.003 0.006 0.003 0.004 0.004 0.003
1 ‐0.5 0.002 0.003 0.004 0.003 0.004 0.004 0.005
1 ‐1 0.002 0.003 0.004 0.003 0.005 0.005 0.005
1 ‐2 0.001 0.003 0.005 0.003 0.008 0.008 0.008



Table 3b Monte Carlo standard error each estimator based on samples of size 1000,  1000 samples.  
The model is just identified.  The approximate proportion of 1's in each sample is .5.

θ λ ols probit IV probit Linear IV agls tscml pretest
0.05 2 0.001 0.004 1.31 0.377 0.751 0.751 0.712
0.05 1 0.001 0.002 0.821 0.297 0.49 0.49 0.304
0.05 0.5 0.001 0.002 2.168 0.879 1.349 1.349 0.16
0.05 0 0.001 0.001 2.438 1.193 1.724 1.724 1.551
0.05 ‐0.5 0.001 0.002 2.122 1.279 2.089 2.089 1.981
0.05 ‐1 0.001 0.002 8.888 6.092 11.608 11.608 11.607
0.05 ‐2 0.001 0.004 1.256 0.771 1.487 1.487 1.378
0.1 2 0.001 0.004 0.368 0.1 0.243 0.243 0.243
0.1 1 0.001 0.002 3.428 1.253 1.714 1.714 0.056
0.1 0.5 0.001 0.002 0.682 0.297 0.401 0.401 0.053
0.1 0 0.001 0.001 0.195 0.099 0.138 0.138 0.129
0.1 ‐0.5 0.001 0.002 0.207 0.123 0.222 0.222 0.204
0.1 ‐1 0.001 0.002 0.038 0.029 0.051 0.051 0.049
0.1 ‐2 0.001 0.004 0.501 0.311 0.623 0.623 0.623

0.25 2 0.001 0.003 0.02 0.006 0.014 0.014 0.014
0.25 1 0.001 0.002 0.015 0.005 0.009 0.009 0.01
0.25 0.5 0.001 0.002 0.013 0.005 0.008 0.008 0.01
0.25 0 0.001 0.001 0.01 0.005 0.007 0.007 0.005

Design Estimator

0.25 0 0.001 0.001 0.01 0.005 0.007 0.007 0.005
0.25 ‐0.5 0.001 0.002 0.008 0.005 0.008 0.008 0.01
0.25 ‐1 0.001 0.002 0.007 0.005 0.009 0.009 0.009
0.25 ‐2 0.001 0.003 0.009 0.006 0.014 0.014 0.014
0.5 2 0.001 0.003 0.01 0.003 0.007 0.007 0.007
0.5 1 0.001 0.002 0.007 0.003 0.004 0.004 0.004
0.5 0.5 0.001 0.001 0.006 0.003 0.004 0.004 0.004
0.5 0 0.001 0.001 0.005 0.002 0.004 0.004 0.003
0.5 ‐0.5 0.001 0.001 0.004 0.003 0.004 0.004 0.004
0.5 ‐1 0.001 0.002 0.003 0.003 0.004 0.004 0.004
0.5 ‐2 0.001 0.002 0.004 0.003 0.006 0.006 0.006
1 2 0.001 0.001 0.005 0.001 0.003 0.003 0.003
1 1 0.001 0.001 0.003 0.001 0.002 0.002 0.002
1 0.5 0.001 0.001 0.003 0.001 0.002 0.002 0.002
1 0 0.001 0.001 0.002 0.001 0.002 0.002 0.001
1 ‐0.5 0.001 0.001 0.002 0.001 0.002 0.002 0.002
1 ‐1 0.001 0.001 0.002 0.001 0.002 0.002 0.002
1 ‐2 0.001 0.001 0.002 0.001 0.003 0.003 0.003



Table 4a Comparison of agls and LIML.  Sample size = 200, model just identified.
Upper panel compars the coefficient on the endogenous variable (γ=0)
Lower panel compares the percentiles to the pvalue of the corresponding t‐ratio.
λ
θ

agls LIML agls LIML agls LIML agls LIML
1% ‐44.751 ‐1.021 ‐45.860 ‐0.96689 ‐0.563 ‐0.371 ‐0.720 ‐0.325
5% ‐7.270 ‐0.947 ‐10.488 ‐0.85039 ‐0.347 ‐0.271 ‐0.425 ‐0.235

10% ‐3.649 ‐0.864 ‐5.034 ‐0.70906 ‐0.271 ‐0.221 ‐0.328 ‐0.195
25% ‐0.790 ‐0.489 ‐0.842 ‐0.27075 ‐0.137 ‐0.118 ‐0.173 ‐0.114

                                                                                           
50% 0.300 0.293 1.117 0.888625 ‐0.008 ‐0.008 ‐0.009 ‐0.006

                                                                                           
75% 1.462 1.003 2.994 1.557343 0.113 0.109 0.136 0.108
90% 3.645 1.111 8.057 2.068173 0.221 0.219 0.246 0.212
95% 8.198 1.166 12.735 2.246212 0.270 0.269 0.318 0.272
99% 48.105 1.253 64.591 2.512663 0.420 0.417 0.433 0.384

 Mean      ‐0.368 0.235 3.462 0.703199 ‐0.020 ‐0.005 ‐0.029 0.001
 Std. Dev. 31.512 0.756 87.029 1.033331 0.193 0.167 0.233 0.158
                                                                                               
 Variance  992.991 0.571 7574.060 1.067773 0.037 0.028 0.055 0.025
Sk 10 139 0 216 19 665 0 0193 0 341 0 155 0 502 0 395

2
1

C
o
e
f
f
e
c
i
e
n
t

0.5
0.1

2
0.1

0.5
1

 Skewness  ‐10.139 ‐0.216 19.665 ‐0.0193 ‐0.341 0.155 ‐0.502 0.395
 Kurtosis  255.376 1.546 497.026 1.71487 3.670 3.050 3.758 3.495

          

1% 0.077 0.00E+00 0.004 7.46E‐17 0.019 0.001 0.017 0.004
5% 0.222 1.78E‐38 0.037 1.33E‐06 0.079 0.027 0.075 0.045

10% 0.299 2.60E‐16 0.105 0.001 0.129 0.083 0.126 0.097
25% 0.479 3.92E‐04 0.329 0.076 0.265 0.228 0.277 0.245

                                                                                     
50% 0.697 0.222 0.660 0.393 0.517 0.517 0.499 0.489

                                                                                     
75% 0.868 0.696 0.856 0.720 0.773 0.775 0.753 0.755
90% 0.952 0.915 0.934 0.884 0.905 0.905 0.903 0.903
95% 0.976 0.958 0.965 0.938 0.957 0.958 0.954 0.954
99% 0.996 0.995 0.994 0.987 0.995 0.995 0.984 0.983

p
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Table 4b Comparison of agls and LIML.  Sample size = 1000, model just identified.
Upper panel compars the coefficient on the endogenous variable (γ=0)
Lower panel compares the percentiles to the pvalue of the corresponding t‐ratio.
λ
θ

agls LIML agls LIML agls LIML agls LIML
1% ‐1.379 ‐0.646 ‐2.295 ‐0.548 ‐0.222 ‐0.183 ‐0.261 ‐0.160
5% ‐0.709 ‐0.454 ‐1.212 ‐0.370 ‐0.154 ‐0.133 ‐0.168 ‐0.109
10% ‐0.532 ‐0.376 ‐0.901 ‐0.307 ‐0.115 ‐0.104 ‐0.128 ‐0.086
25% ‐0.247 ‐0.199 ‐0.439 ‐0.177 ‐0.060 ‐0.054 ‐0.074 ‐0.050

                                                                                           
50% ‐0.013 ‐0.012 ‐0.006 ‐0.003 ‐0.005 ‐0.005 ‐0.001 0.000

                                                                                           
75% 0.218 0.210 0.338 0.187 0.051 0.049 0.063 0.048
90% 0.411 0.410 0.601 0.388 0.102 0.099 0.125 0.096
95% 0.534 0.533 0.736 0.505 0.130 0.128 0.158 0.127
99% 0.787 0.748 0.961 0.731 0.201 0.199 0.220 0.177

 Mean      ‐0.042 0.009 ‐0.101 0.021 ‐0.005 ‐0.002 ‐0.004 0.002
 Std. Dev. 0.397 0.300 0.643 0.273 0.087 0.080 0.100 0.072
                                                                                        
 Variance  0.158 0.090 0.414 0.075 0.007 0.006 0.010 0.005

0.5 2
0.25 1 1

2
0.25

C
o
e
f
f
e
c
i
e
n
t

0.5

 Skewness  ‐0.845 0.257 ‐1.243 0.455 ‐0.104 0.112 ‐0.141 0.210
 Kurtosis  5.384 2.832 6.080 3.172 3.182 3.099 2.937 2.877

          

1% 0.010 7.38E‐05 0.004 0.004 0.006 0.003 0.009 0.008
5% 0.069 0.006 0.050 0.050 0.040 0.031 0.042 0.042
10% 0.114 0.037 0.129 0.108 0.090 0.079 0.094 0.091
25% 0.255 0.215 0.288 0.261 0.232 0.234 0.245 0.236

                                                                               
50% 0.506 0.498 0.509 0.494 0.505 0.501 0.488 0.484

                                                                               
75% 0.757 0.760 0.736 0.734 0.753 0.754 0.724 0.724
90% 0.907 0.907 0.896 0.895 0.910 0.910 0.886 0.887
95% 0.959 0.959 0.946 0.946 0.955 0.955 0.941 0.941
99% 0.995 0.995 0.989 0.989 0.988 0.988 0.992 0.992
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