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BOOTSTRAP INFERENCES IN HETEROSCEDASTIC
SAMPLE SELECTION MODELS: A MONTE CARLO

INVESTIGATION

LEE C. ADKINS AND R. CARTER HILL

Abstract. Several methods of estimating heteroscedastic sam-
ple selection models are presented and the sampling properties
of bootstrap estimators of test statistics are studied using Monte
Carlo simulations.

1. Introduction

Many researchers use Heckman’s (1979) 2-step estimator to estimate
the parameters of a linear regression model whose dependent variable is
only observed when the latent variable in a ‘selection’ model is positive.
While the 2-step estimator is easy to implement, computation of the
proper standard errors and the resulting t-statistics and confidence
intervals is not as simple. This problem was investigated by Hill, Adkins
& Bender (2003).

If the errors of the selection equation, the regression equation, or
both are heteroscedastic, it is well-known that the usual two-step and
maximum likelihood estimators are inconsistent. Donald (1995) has
studied this problem and suggested a semiparametric estimator that is
consistent in heteroscedastic selectivity models. Chen & Khan (2003)
has also proposed a semiparametric estimator of this model. More
recently, Lewbel (2003) has proposed an alternative that is both easy to
implement and robust to heteroscedastic misspecification of unknown
form.

In this paper we propose a simple estimator that is easily computed
using standard regression software and study its performance in a small
set of Monte Carlo simulations. To obtain test statistics we use the
bootstrap to estimate standard errors and use these to form test statis-
tics that are close to being pivotal when heteroscedasticity is accounted
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2 LEE C. ADKINS AND R. CARTER HILL

for in the regression equation. Unlike Fernandez-Sainz, Rodriguez-Poo
& Martin (2002), who consider heteroscedasticity in the selection equa-
tion, our focus is on heteroscedasticity in the regression equation.

2. The Selectivity Model

Following Greene (1997) consider a model consisting of two equa-
tions. The first is the “selection equation,” defined

(2.1) z∗
i = w′

iγ + ui, i = 1, . . . , N

where z∗
i is a latent variable, γ is a Kx1 vector of parameters, w′

i is
a 1xK row vector of observations on K exogenous variables, and ui is
a random disturbance. The latent variable is unobservable, but we do
observe the dichotomous variable

(2.2) zi =

{
1 z∗

i > 0
0 otherwise

The second equation is the linear model of interest. It is

(2.3) yi = x′
iβ + ei, i = 1, . . . , n, N > n

where yi is an observable random variable, β is an Mx1 vector of param-
eters, x′

i is a 1xM vector of exogenous variables, and ei is a random
disturbance. It is assumed that the random disturbances of the two
equations are distributed as

(2.4)
[
ui

ei

]
∼ N

[(
0
0

)
,

(
1 ρσe(qi)

ρσe(qi) σ2
e(qi)

)]
where qi is a Px1 vector of independent variables that ’cause’ the re-
gression part of the model to be heteroscedastic. A selectivity problem
arises when yi is observed only when zi = 1 and ρ 6= 0. In this case the
ordinary least squares estimator of β in (2.3) is biased and inconsis-
tent. In the homoscedastic case, σ2

e(qi) = σ2
e , i = 1, . . . , n, a consistent

estimator has been suggested by Heckman (1979) and is commonly re-
ferred to as Heckman’s two-step estimator, or more simply, Heckit. The
presence of heteroscedasticity in the errors of the regression complicates
things, however.

The conditional mean of yi given that it is observed is

(2.5) E[yi|zi > 0] = x′
iβ + λiβλi

where λi = φ(w′
iγ)/Φ(w′

iγ) is the inverse Mill’s ratio, φ(·) is the stan-
dard normal probability density function evaluated at the argument,
Φ(·) is the cumulative density function of the standard normal random
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variable evaluated at the argument and βλi = ρσe(qi) ≡ ρσei. Adding
a random disturbance yields:

(2.6) yi = x′
iβ + λiβλi + νi

The random disturbance νi had conditional mean and variance given
by

E[νi|zi > 0] = 0

var(νi|zi > 0) = σ2
ei(1− ρ2δi)

(2.7)

where δi = λi(λi+w′
iγ). The implication is that (2.6) is heteroscedastic.

Even if λi were known and nonstochastic, then selectivity corrected
model (2.6) could not be estimated by generalized least squares. This
follows from the fact that heteroscedasticity in the regression equation
introduces n terms to estimate into the second step of Heckman’s esti-
mator, i.e., βλi. Solving this problem holds the key to the estimators
used below.

In this particular parameterization the unknown λi can be estimated
using the sample in the usual way. As in the usual selectivity model,
the stochastic nature of λi in (2.6) makes the automatic use of White’s
heteroscedasticity consistent covariance estimator in the second step
uncertain in this context.

3. Estimators

There have been a number of interesting estimators proposed that
can tackle this problem. Most of them rely on semiparametric of βλi.
Ahn & Powell (1993) propose a two-step estimator that uses non-
parametric regression to estimate the selection equation followed by a
weighted instrumental variables estimator for the regression equation.
Although the estimator is robust to some distributional misspecifica-
tion, it is not robust to the presence of heteroscedasticity. Chen & Khan
(2003) extend the Ahn and Powell estimator for use in heteroscedas-
tic models by introducing another step that is carried out between the
two steps of the Ahn and Powell estimator. Thus, the first step con-
sists of nonparametric estimation of the so-called propensity score (i.e.,
the probability of being selected given the values of wi in the selection
equation). The second step requires the estimation of two quantile
functions for the regression equation using local polynomial estimators
and taking their difference to obtain the so-called ‘interquartile range.’
The third stage is the same as Ahn and Powell’s second step. There
are similarities between the Chen and Khan estimator and the one pro-
posed by Donald (1995), who uses just two steps, both nonparametric
regressions.
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In deriving a test of the normality assumption commonly used in
selectivity models der Klaauw and Koning (2003) use a semiparametric
method inspired by Gallant and Nychka (1987). They approximate the
the unknown density of the model’s errors using a flexible parametric
form based on Hermite series. Based on the results from simulations,
this flexible parametric form is found to be useful in reducing bias
attributable to heteroscedastic errors.

Lewbel (2004) suggests using GMM estimation to efficiently esti-
mate the parameters of the standard selectivity model and extends
that idea to models that contain an endogenous regressor in the re-
gression equation. A simpler estimator is also proposed that requires
what Lewbel refers to as a ‘very exogenous regressor’ that provides the
basis for linear two stage least squares estimation of a sample selection
model with endogenous regressors. An attractive feature of Lewbel’s
estimator is that the selection equation does not have to be estimated.
Lewbel states that these simple estimators are in fact special cases of
nonparametric estimators in Lewbel (2003).

Fernandez-Sainz et al. (2002) study the finite sample behavior of
usual parametric Heckit and Ahn and Powell’s (1993) semiparametric
two step estimators of homoscedastic sample selection models when
the errors of the selection equation are actually heteroscedastic. Note,
in their study both estimators are being used for misspecified models.
They find that even though the semiparametric estimator is robust to
heteroscedasticity in the selection equation, the usual Heckit performs
better than the semiparametric estimator in finite samples in most
cases, especially for highly truncated samples and those where the level
of correlation between errors is high.

In a recent study Jolliffe (2002) uses a technique suggested by Honoré,
Kyriazidou & Udry (1997) for the estimation of heteroscedastic Type
III Tobit (T3T) models. In Type III Tobit models, the dependent vari-
able in the selection equation is censored rather than binary. Many ap-
plications of the Heckit procedure could actually be estimated as T3T,
but the censored variable is transformed into a dummy variable (re-
ferred to as a Type II Tobit). In the Honoré et al. approach trimmed
least squares can be used in both steps to ensure ensure robustness
against heteroscedasticity in either the selection or regression equa-
tions. The Jolliffe paper is interesting because he in fact obtains stan-
dard errors and percentiles of the bias corrected empirical density. This
is evidence that the Type III Tobit-Trimmed Least Squares estimator
he uses can be automated.

Quite frankly, the semiparametric and nonparametric estimators are
difficult to use in practice. They rely on kernel estimation in all cases,



HETEROSCEDASTIC SAMPLE SELECTION 5

quartile regression in some, and as (Fernandez-Sainz et al. 2002) have
shown, may not outperform the usual Heckit estimator in a misspec-
ified model. Their absence in canned software programs means that
they rely on user written software. The difficulties involved with non-
parametric and semiparametric approaches are no doubt responsible for
their limited use. A search of the Social Sciences Citation Index reveals
no references to applications of Donald (1995). The specific number of
applications of Ahn & Powell (1993) is more difficult to determine.
There are 53 total citations, most of these are either theoretical in
nature (e.g., Chen & Khan (2003)) or only peripherally related (e.g.,
Gordon (2003)). One exception is a recent paper by Blundell, Reed &
Stoker (2003) which appears to use the Ahn and Powell estimator.

4. Proposed Estimators

The estimators proposed in this paper are simple ones and we make
no theoretical claims about their consistency. On the other hand, non-
parametric estimators that are known to have good asymptotic proper-
ties are devilishly difficult to use by common practitioners and hence,
are not widely used. So, we employ an intuitively appealing estimators
that are easy to compute and study their small sample properties in a
small Monte Carlo exercise. In some respects this is similar in spirit
to Fernandez-Sainz et al. (2002) who use estimators that are likewise
misapplied.

We use the fact that the selectivity parameter in the regression
model, βλi is a function of the heteroscedasticity. We then use all
available sample information, xi and wi to model changing variances.
For simplicity, we use a second order polynomial to approximate this
function, that is, we take all unique variables in xi and wi along with
their squares and cross products to construct regressors qi. Then,

(4.1) βλi = q′
iγ

This is substituted into (2.6) where it interacts with each λi. The model
becomes

(4.2) yi = x′
iβ + λ̂iq

′
iγ + νi

where λ̂i is estimated using probit estimation in the first stage, multi-
plied times each element of qi, and OLS is used on (??) in the second
stage.

The advantage of this estimator is that it is linear and is easy to
compute and to bootstrap. The disadvantage is that it offers no ele-
gant way to test the selectivity hypothesis. As an alternative, we also
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consider modeling

(4.3) βλi = ρ{σ2 exp(q′
iα)}

1
2 = exp(q′

iγ)βλ

which yields the model

(4.4) yi = x′
iβ + λ̂i exp(q′

iγ)βλ + νi

which is estimated using nonlinear least squares. This form is particu-
larly useful for testing various hypotheses about the model. If γ = 0,
then the model reduces to the usual homoscedastic selectivity model.
If βλ = ρσ = 0 then there is no sample selection problem and OLS
can be consistently used for the parameters of the regression function.
The biggest problem with this model is that it requires nonlinear es-
timation. In particular, the estimator is prone to nonconvergence and
can be sensitive to starting values. In any given application, this is not
so much of a problem. It does make a simulation study of the estima-
tor difficult, however. This problem is compounded if a bootstrapping
layer is added to the Monte Carlo.

5. Experimental Design

The Monte Carlo we employ is very similar to that of Hill et al.
(2003) which is based on Zuehlke & Zeman (1991), and modified by
Nawata & Nagase (1996). Heteroscedasticity in the regressions errors
are then added. The performance of two-step estimator of a regression
slope parameter is examined under various circumstances likely to affect
performance. The sample size, severity of censoring, degree of selection
bias, correlation between independent variables in the selection and
regression equations are all varied within the Monte Carlo.

The vector of explanatory variables, xi contains a constant and one
continuous explanatory variable. Likewise, wi, the vector or explana-
tory variables in the first stage selection equation also contains a con-
stant and 1 explanatory variable. Thus, the selection equation and
regression equation are

z∗
i = γ1 + γ2wi + ui(5.1)

yi = β1 + β2xi + ei(5.2)

Another variable, vi is introduced that is correlated with the regres-
sors, xi of the second equation. These are used to generate the desired
heteroscedasticity. Our goal in creating a new variable that is only
partially correlated with regressors is to purposely omit an offending
variable in our estimator of heteroscedasticity. Indeed, these variables
are seldom known to the researcher and it is unlikely that all variables
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that cause heteroscedasticity will be available to the user. As the corre-
lation between the xi and vi diminish, we would expect a deterioration
in the performance of the proposed estimators.

The correlation between xi and wi. denoted ρxw, is set at 0, .5, or
.95. For identification, it is seldom a good idea for this correlation to
be perfect (as in wi = xi). The Monte Carlo evidence in Hill et al.
(2003) speaks to this. In addition, many of the theoretical papers in
this literature use restrictions to identify parameters in the regression
(e.g., (Lewbel 2003), Ahn & Powell (1993), and Fernandez-Sainz et al.
(2002)). The severity of censoring is controlled by varying the con-
stant, γ1, in the first stage probit model. Following Zuehlke & Zeman
(1991), γ1=[-.96 0 .96] which corresponds to expected subsamples of
25%, 50%, and 75% given ui iid N(0, 1). The degree of selection bias is
controlled by deviating ρ, which takes on values of 0, .5, and .99. The
other parameter of the selection equation, γ2 = 1. The specification is
completed by the following parameter choices: β′ = [100 1] and σe = 1.

Heteroscedasticity enters the regression equation as

(5.3) σ2
i = exp (α1 + α2xi + α3wi + α4vi)

α = {0 0.3 0.3 0.2} and vi is chosen to be correlated with xi but
otherwise omitted from either xi and wi. This value of α was chosen
to keep the overall mean variance in the equation close to 1. The
correlation between vi and xi is set to -0.5.

Our goal in this paper is to develop reliable means for testing hy-
potheses about the slope parameters in a heteroscedastic regression
equation that is incidentally truncated. Specifically, we we test the
null hypothesis Ho: β2 = 0 against the alternative β2 6= 0 using the
t-statistic t = (β̂2−β2)/σ̂β̂2

where β̂2 is one of our proposed estimators

of β2 and σ̂β̂2
is an estimated standard error for β̂2. The statistic is

computable in the Monte Carlo since the true value of β2 is completely
known in the experiments. If the distribution of t is symmetric, the
null hypothesis is rejected if |t| ≥ tc where tc is the α/2 critical value
from the distribution of t. When t is not symmetric, then the hypoth-
esis is rejected if t ≤ tlc or t ≥ tuc where tlc and tuc are the lower and
upper α/2 critical values, respectively, from the distribution of t. The
problem here is that the exact or approximate distribution of t is not
known in this model. Even if a consistent estimator of β2 is found, a
consistent estimator of σ̂β̂2

is unavailable due the heteroscedasticity in
the errors of the regression.

Specifically, in each Monte Carlo sample m we resample, with re-
placement, from the rows of the data matrix y, x, z, w to obtain a boot-
strap sample β̂b of size N . A pivotal statistic is obtained for each of
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400 bootstrap samples by computing the t-statistic value for the (true
in the sample) hypothesis Ho: β2 = 0 against the alternative β2 6= 0.
That is, we compute for each bootstrap sample tb = (β̂b − β̂m)/σ̂β̂b

where β̂b is estimate of β2 from the ith bootstrap sample and β̂m is the
estimate from the underlying mth iteration of the monte carlo; σ̂β̂b

is
the sample standard error from the bootstrap iterations. The values
of these t-statistics are sorted by magnitude and the lower and upper
t-critical values tlc and tuc are chosen to be the lower and upper 5%
values. We will report the size of the rejection region from these tests
in the tables that follow.

A total of 400 samples are drawn using each of the combinations
of the parameter above for sample size of 400. Where employed, the
number of bootstrap samples is 400.

6. Results

In the first set of experiments, α = 0 which makes the regression
equation homoscedastic. Two different estimators are examined. In
column 4 the usual Heckit results appear. In column 5, the results for
the linear heteroscedastic estimator that uses x, w and their cross prod-
uct appear. In column 6 results appear for the linear heteroscedastic
Heckit model that includes x, w, and their cross products and squares.
In the last column, the nonlinear Heckit model results are tabled where
w, x, and their cross product appears in the heteroscedasticity func-
tion. The first 3 columns describe the basic experimental design. The
degree of truncation varies between 75%, 50%, and 25%. Collinear-
ity describes the degree of linear association between the regressors of
the selection equation and of the regression. Correlation refers to ρ in
(2.4) which is the degree of correlation between the errors of the two
equations.

In Table 1, bias results are reported for each of the 27 designs. In
Table 2 are the t-ratios computed based on the Monte Carlo standard
errors. These results can be used to indicate whether the biases re-
ported in Table 1 are statistically significant or not.

It is clear from these two tables that bias is small and in nearly every
instance, not significantly different from zero at the 5% level.

The results from the next set of experiments appear in Tables 3
and 4. Heteroscedasticity is introduced in these designs by setting
α = {0 0.3 0.3 0.2} and vi was generated to be correlated with xi (but
not included in wi or xi. The same set of estimators employed above
were used. That is, in column 4 the usual Heckit results appear. In
column 5 (Het x,w), the results for the linear heteroscedastic estimator
that uses x, w and their cross product appear. In column 6 (Het2 x,w)



HETEROSCEDASTIC SAMPLE SELECTION 9

Table 1. Estimated Bias of Estimators: Homoscedas-
tic Errors

Design Bias
(4) (5) (6) (7)

Trunc Collin Corr Heckit Het x,w Het2 x,w Nlin w,w
0.75 0.00 0.00 0.0016 0.0038 0.0081 0.0097
0.75 0.50 0.00 0.0031 0.0162 0.0174 0.0058
0.75 0.95 0.00 0.0009 0.0047 0.0696 0.0015
0.75 0.00 0.50 -0.0012 -0.0147 -0.0136 -0.0087
0.75 0.50 0.50 0.0015 -0.0048 -0.0060 -0.0056
0.75 0.95 0.50 0.0103 -0.0045 0.0337 0.0236
0.75 0.00 0.99 0.0010 0.0047 0.0043 -0.0046
0.75 0.50 0.99 -0.0049 -0.0107 0.0043 -0.0230
0.75 0.95 0.99 0.0094 0.0103 0.0477 0.0196
0.50 0.00 0.00 -0.0018 0.0097 0.0088 0.0017
0.50 0.50 0.00 -0.0041 -0.0049 -0.0047 -0.0080
0.50 0.95 0.00 0.0129 0.0301 0.0620 0.0270
0.50 0.00 0.50 0.0030 0.0158 0.0143 0.0057
0.50 0.50 0.50 -0.0013 -0.0057 -0.0028 -0.0066
0.50 0.95 0.50 0.0057 0.0102 0.0242 0.0312
0.50 0.00 0.99 0.0012 -0.0094 -0.0076 -0.0050
0.50 0.50 0.99 0.0019 0.0054 0.0028 -0.0066
0.50 0.95 0.99 -0.0012 -0.0035 -0.0087 0.0035
0.25 0.00 0.00 -0.0017 0.0007 0.0008 -0.0019
0.25 0.50 0.00 -0.0051 -0.0006 -0.0048 -0.0056
0.25 0.95 0.00 0.0035 -0.0048 0.0192 -0.0086
0.25 0.00 0.50 -0.0011 0.0054 0.0050 0.0004
0.25 0.50 0.50 -0.0013 0.0036 0.0024 0.0021
0.25 0.95 0.50 -0.0014 -0.0067 -0.0170 0.0171
0.25 0.00 0.99 0.0023 -0.0032 -0.0029 -0.0028
0.25 0.50 0.99 -0.0048 -0.0154 -0.0125 -0.0206
0.25 0.95 0.99 0.0077 0.0032 0.0012 0.0251

results appear for the linear heteroscedastic Heckit model that includes
x, w, and their cross products and squares. In the last column, the
nonlinear Heckit model results are tabled where w, x, and their cross
product appears in the heteroscedasticity function.

The biases in Table 3 are all relatively small, but significantly dif-
ferent from zero at the 5% level in 15 of the 27 designs according to
the t-ratios in Table 4. For the linear heteroscedastic estimators things
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Table 2. T-ratios for Estimated Bias: Homoscedastic Errors

Design T-ratio
(4) (5) (6) (7)

Trunc Collin Corr Heckit Het x,w Het2 x,w Nlin w,w
0.75 0.00 0.00 0.3457 0.1941 0.4057 1.0243
0.75 0.50 0.00 0.5594 0.7830 0.7107 0.6177
0.75 0.95 0.00 0.0611 0.1618 1.3924 0.0542
0.75 0.00 0.50 -0.2938 -0.7799 -0.7049 -0.8855
0.75 0.50 0.50 0.2949 -0.2383 -0.2496 -0.5106
0.75 0.95 0.50 0.8036 -0.1719 0.6719 0.9415
0.75 0.00 0.99 0.3160 0.3187 0.2819 -0.4422
0.75 0.50 0.99 -1.4496 -0.6250 0.2072 -2.0885
0.75 0.95 0.99 0.9994 0.4601 1.0992 0.8439
0.50 0.00 0.00 -0.5386 1.0698 0.9459 0.2875
0.50 0.50 0.00 -1.1441 -0.4775 -0.3961 -1.3184
0.50 0.95 0.00 1.4332 1.9878 2.4113 1.7897
0.50 0.00 0.50 0.9264 1.8536 1.6643 0.8661
0.50 0.50 0.50 -0.3606 -0.5545 -0.2304 -0.9908
0.50 0.95 0.50 0.7155 0.7006 1.0513 2.0876
0.50 0.00 0.99 0.4816 -1.2845 -1.0200 -0.7560
0.50 0.50 0.99 0.7310 0.6504 0.2713 -0.8987
0.50 0.95 0.99 -0.1787 -0.2650 -0.4004 0.2516
0.25 0.00 0.00 -0.6126 0.1304 0.1419 -0.4603
0.25 0.50 0.00 -1.7504 -0.1085 -0.6864 -1.1918
0.25 0.95 0.00 0.5478 -0.4937 1.3701 -0.8155
0.25 0.00 0.50 -0.4272 1.0442 0.9742 0.0843
0.25 0.50 0.50 -0.4134 0.5934 0.3536 0.4093
0.25 0.95 0.50 -0.2445 -0.7248 -1.3487 1.8497
0.25 0.00 0.99 0.9975 -0.6470 -0.5970 -0.5987
0.25 0.50 0.99 -1.8122 -2.8356 -1.9797 -4.1124
0.25 0.95 0.99 1.4082 0.3776 0.0945 2.6999

improve. For Het x,w and Het2 x,w only 2 of 27 are significantly bi-
ased. For the nonlinear heteroscedastic model only w, x and the cross
product is included in the heteroscedasticity function; the result is that
5 of 27 are biased.1

1 The experiments were repeated for nonlinear heteroscedastic model with
squared and cross products of w and x added to the model. This slowed the Monte
Carlo simulations to a crawl and the estimation was terminated after a few days
which yielded results for only the first 5 designs. These results, though limited,
were no better, if slightly worse than those for the nonlinear model above. At this
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Table 3. Estimated Bias of Estimators: Heteroscedas-
tic Errors

Design Bias
(4) (5) (6) (7)

Trunc Collin Corr Heckit Het x,w Het2 x,w Nlin w,w
0.75 0.00 0.00 0.0022 -0.0049 0.0007 0.0058
0.75 0.50 0.00 0.0044 0.0251 0.0131 0.0134
0.75 0.95 0.00 0.0142 0.0555 0.0891 0.0424
0.75 0.00 0.50 0.0451 -0.0065 0.0034 -0.0224
0.75 0.50 0.50 0.0509 0.0081 0.0143 0.0039
0.75 0.95 0.50 0.0009 -0.0073 -0.0333 -0.0072
0.75 0.00 0.99 0.0862 0.0199 0.0166 0.0592
0.75 0.50 0.99 0.0922 -0.0299 0.0065 0.0113
0.75 0.95 0.99 -0.0007 0.0461 0.0558 0.0973
0.50 0.00 0.00 -0.0029 0.0063 0.0022 0.0031
0.50 0.50 0.00 -0.0052 -0.0052 -0.0005 -0.0072
0.50 0.95 0.00 0.0264 0.0619 0.0702 0.0744
0.50 0.00 0.50 0.0322 0.0235 0.0193 0.0140
0.50 0.50 0.50 0.0217 -0.0059 0.0000 -0.0075
0.50 0.95 0.50 -0.0109 0.0237 0.0403 0.0287
0.50 0.00 0.99 0.0545 -0.0148 -0.0019 -0.0001
0.50 0.50 0.99 0.0527 0.0048 0.0118 0.0002
0.50 0.95 0.99 -0.0523 -0.0155 -0.0041 -0.0078
0.25 0.00 0.00 0.0000 0.0024 0.0039 -0.0006
0.25 0.50 0.00 -0.0048 -0.0004 -0.0040 -0.0052
0.25 0.95 0.00 0.0016 -0.0007 0.0122 0.0063
0.25 0.00 0.50 0.0130 0.0070 0.0073 -0.0062
0.25 0.50 0.50 0.0077 0.0025 0.0013 -0.0041
0.25 0.95 0.50 -0.0112 -0.0015 -0.0028 0.0120
0.25 0.00 0.99 0.0266 -0.0014 0.0002 -0.0026
0.25 0.50 0.99 0.0178 -0.0136 -0.0063 -0.0152
0.25 0.95 0.99 -0.0252 0.0095 0.0105 0.0437

Sizes of 10% nominal tests based on the usual Heckit estimator and
the linear heteroscedastic estimators are computed in the Monte Carlo.
The results are based on 400 Monte Carlo samples and 400 bootstrap

point we cannot recommend its use. If one is determined to test a hypothesis about
the occurrence of selectivity, then this estimator may still be the best way to go.
The key to its use is to keep the nonlinear heteroscedasticity function as simple as
possible.
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Table 4. T-ratios for Estimated Bias: Heteroscedastic Errors

Design T-ratio
(4) (5) (6) (7)

Trunc Collin Corr Heckit Het x,w Het2 x,w Nlin w,w
0.75 0.00 0.00 0.3860 -0.1915 0.0433 0.4285
0.75 0.50 0.00 0.6275 0.7719 0.5191 0.8672
0.75 0.95 0.00 0.6773 1.1529 1.4149 0.8026
0.75 0.00 0.50 8.8447 -0.2677 0.2302 -1.7919
0.75 0.50 0.50 8.0293 0.2668 0.6113 0.2505
0.75 0.95 0.50 0.0473 -0.1626 -0.5551 -0.1404
0.75 0.00 0.99 22.2382 1.0403 1.3980 4.1777
0.75 0.50 0.99 19.3049 -0.9980 0.2842 0.6634
0.75 0.95 0.99 -0.0451 1.0697 0.9249 2.0524
0.50 0.00 0.00 -0.7422 0.5358 0.2514 0.3931
0.50 0.50 0.00 -1.1850 -0.3817 -0.0426 -0.8172
0.50 0.95 0.00 2.0679 2.5958 2.2879 2.4170
0.50 0.00 0.50 8.7451 2.1599 2.3517 1.7501
0.50 0.50 0.50 4.9041 -0.4024 -0.0032 -0.8157
0.50 0.95 0.50 -0.9120 0.9999 1.2892 0.9649
0.50 0.00 0.99 18.0333 -1.4621 -0.2565 -0.0124
0.50 0.50 0.99 15.3009 0.3546 1.0631 0.0205
0.50 0.95 0.99 -4.5644 -0.6646 -0.1346 -0.2704
0.25 0.00 0.00 0.0120 0.3487 0.6733 -0.1129
0.25 0.50 0.00 -1.4467 -0.0511 -0.5939 -0.8480
0.25 0.95 0.00 0.1854 -0.0492 0.7456 0.3658
0.25 0.00 0.50 4.4851 1.0983 1.3650 -1.1821
0.25 0.50 0.50 2.1725 0.3153 0.2005 -0.6060
0.25 0.95 0.50 -1.3771 -0.1154 -0.1832 0.6989
0.25 0.00 0.99 10.1242 -0.2242 0.0369 -0.4541
0.25 0.50 0.99 5.6186 -1.7848 -0.9582 -2.2347
0.25 0.95 0.99 -3.1202 0.7441 0.6857 2.6133

samples. To compute valid bootstrap test statistics we require consis-
tent estimators of the parameters, namely β2 and its estimated stan-
dard error. Based on the initial experiments the linear heteroscedastic
estimator may satisfy this. If heteroscedasticity is not too severe or
not completely unrelated to x then it is unbiased and it appears from
initial experiments that its variance shrinks as sample size increases.
Consistent estimation of the standard error is more problematic. Since
there is no known heteroscedastic consistent covariance for this estima-
tor the bootstrap standard error of the estimates themselves is used.



HETEROSCEDASTIC SAMPLE SELECTION 13

That is,

(6.1) σ̂2
bs

=
1
N

∑
(β̂bi − β̂bi)2

Bootstrapping the nonlinear model is simply not feasible in the con-
text of the monte carlo; with a 3-GHz Pentium 4 with 2 gigabytes of
ram we estimated over 200 days to complete all 27 designs! Hence,
we focus on test statistics for the linear models, which as it turns out,
behave reasonably well in our simulations.

In Table 5 the sizes of nominal 10% t-tests of the hypothesis that
the regression slope is equal to zero are reported. The data are ho-
moscedastic and the usual Heckit estimator is asymptotically unbiased
and the usual t-test should be pivotal and be approximately normally
distributed.

As can be seen, the usual Heckit estimator in columns (4) and (5)
results in tests that are close to the nominal 10% size. In some cases
bootstrapping the standard error of the homoscedastic Heckit helps
(column 5) and sometimes not (column 4). In the last row, the aver-
age distance between the actual test size and the nominal size (0.1) is
given. According to the summary measure, the results in column 5 that
are based on bootstrap standard errors are closer to nominal 10% level
than the usual asymptotic test. The test sizes for the heteroscedastic
estimators are not quite as close to the nominal 10% level as the oth-
ers, but their performance–even when the model is homoscedastic–is
reasonably good.

In Table 6, the experiments were repeated with heteroscedastic er-
rors. In this case the heteroscedasticity is generated according to equa-
tion (5.3) with α = {0 0.3 0.3 0.2}.

In this case, the test sizes for the proposed estimators are very close
to the nominal test size. Clearly the heteroscedastic estimator and the
bootstrap test outperforms the usual tests, especially when correlation
between the 2 model’s errors is high. The data are fairly heteroscedastic
in this design. In a random sample, the variances of the regression
errors ranged from .25 to 6.5.

Another round of experiments were conducted that increased the
degree of heteroscedasticity. These results appear in Table 7. In this
case, α in (5.3) was doubled to α = {0 0.6 0.6 0.4}. The purpose is
to show the large size distortion associated with doing nothing about
heteroscedasticity vs. accounting for it in our admittedly ad hoc way.
The results for the various t-tests appear in the table above. In this
case, and vi was generated to be correlated with xi (but not included
in wi or xi. With α = {0 0.6 0.6 0.4}, the data are highly heteroscedas-
tic. For instance, variances in a typical sample ranged in value from
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Table 5. Size of 10% t-tests: Homoscedastic Errors

Design asy t Bootstrap
(4) (5) (6) (7)

Trunc Collin Corr Heckit Heckit Het x,w Het2 x,w
0.75 0.00 0.00 0.1025 0.0875 0.0400 0.0425
0.75 0.50 0.00 0.1175 0.1100 0.0700 0.0600
0.75 0.95 0.00 0.1075 0.1200 0.0700 0.0475
0.75 0.00 0.50 0.0950 0.1075 0.0600 0.0550
0.75 0.50 0.50 0.1025 0.0925 0.0700 0.0650
0.75 0.95 0.50 0.0775 0.0850 0.0850 0.0600
0.75 0.00 0.99 0.1025 0.1100 0.0725 0.0750
0.75 0.50 0.99 0.1075 0.1050 0.1000 0.1000
0.75 0.95 0.99 0.0725 0.1175 0.1300 0.0900
0.50 0.00 0.00 0.1150 0.1150 0.0800 0.0725
0.50 0.50 0.00 0.1075 0.1050 0.0850 0.0800
0.50 0.95 0.00 0.0675 0.0825 0.0875 0.1075
0.50 0.00 0.50 0.0975 0.1050 0.0900 0.1000
0.50 0.50 0.50 0.1175 0.1175 0.0975 0.0875
0.50 0.95 0.50 0.0875 0.1025 0.1125 0.1000
0.50 0.00 0.99 0.0875 0.0800 0.0675 0.0600
0.50 0.50 0.99 0.0725 0.0725 0.0675 0.0650
0.50 0.95 0.99 0.0825 0.1200 0.1250 0.0950
0.25 0.00 0.00 0.1100 0.1250 0.0825 0.0775
0.25 0.50 0.00 0.1050 0.1050 0.0850 0.0925
0.25 0.95 0.00 0.0700 0.1150 0.1175 0.0850
0.25 0.00 0.50 0.1225 0.1175 0.0925 0.0850
0.25 0.50 0.50 0.0750 0.0800 0.0725 0.0875
0.25 0.95 0.50 0.0800 0.1100 0.0850 0.0675
0.25 0.00 0.99 0.0850 0.0875 0.0875 0.0825
0.25 0.50 0.99 0.1075 0.1150 0.0775 0.0750
0.25 0.95 0.99 0.0400 0.0775 0.0625 0.0525

Avg distance from .1 0.0203 0.0154 0.0254 0.0291

.07 to 43. In the column 4 are results for the usual t test based on
the asymptotic covariance of the usual Heckit estimator. As the cor-
relation between the equations’ errors increases, the test size becomes
highly distorted. This is to be expected given the large degree of bias
in the usual estimator under heteroscedasticity. The bootstrap proce-
dures improve things remarkably. Even when the bootstap is used to
obtain the standard error of the usual Heckit estimator, things improve



HETEROSCEDASTIC SAMPLE SELECTION 15

Table 6. Size of 10% t-tests: Heteroscedastic Errors

Design asy t Bootstrap
(4) (5) (6) (7)

Trunc Collin Corr Heckit Heckit Het x,w Het2 x,w
0.75 0.00 0.00 0.1100 0.1100 0.0525 0.0475
0.75 0.50 0.00 0.1375 0.1225 0.0800 0.0800
0.75 0.95 0.00 0.1750 0.1550 0.1425 0.1175
0.75 0.00 0.50 0.1300 0.1125 0.0550 0.0525
0.75 0.50 0.50 0.1175 0.1225 0.0875 0.0850
0.75 0.95 0.50 0.1225 0.0900 0.1175 0.1050
0.75 0.00 0.99 0.3500 0.3450 0.0825 0.0600
0.75 0.50 0.99 0.2500 0.2325 0.1250 0.1200
0.75 0.95 0.99 0.1850 0.1300 0.1825 0.1775
0.50 0.00 0.00 0.1125 0.1025 0.0675 0.0725
0.50 0.50 0.00 0.1275 0.1150 0.0850 0.0875
0.50 0.95 0.00 0.1425 0.1150 0.1325 0.1450
0.50 0.00 0.50 0.1525 0.1550 0.0825 0.0925
0.50 0.50 0.50 0.1525 0.1425 0.1000 0.0900
0.50 0.95 0.50 0.1825 0.1375 0.1375 0.1525
0.50 0.00 0.99 0.2100 0.1925 0.0800 0.0875
0.50 0.50 0.99 0.2100 0.1875 0.0850 0.0825
0.50 0.95 0.99 0.2275 0.1500 0.1625 0.1475
0.25 0.00 0.00 0.1300 0.1250 0.0925 0.0875
0.25 0.50 0.00 0.1125 0.1000 0.0875 0.0750
0.25 0.95 0.00 0.1750 0.1300 0.1350 0.1100
0.25 0.00 0.50 0.1375 0.1200 0.0825 0.0850
0.25 0.50 0.50 0.0875 0.0775 0.0650 0.0700
0.25 0.95 0.50 0.1725 0.1275 0.1025 0.0850
0.25 0.00 0.99 0.1450 0.1200 0.0800 0.0875
0.25 0.50 0.99 0.1450 0.1375 0.0950 0.0800
0.25 0.95 0.99 0.1800 0.1100 0.1000 0.0775

Avg distance 0.0817 0.0648 0.0314 0.0309

(column 5). There is still large size distortion when truncation is high
and correlation between errors is high, but in many cases the bootstrap
is able to improve performance of the t-test. The test sizes in column
6 are based on the estimator that uses x, w and their cross product in
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Table 7. Size of 10% t-tests: Highly Heteroscedastic Errors

Design asy t Bootstrap
(4) (5) (6) (7)

Trunc Collin Corr Heckit Heckit Het x,w Het2 x,w
0.75 0.00 0.00 0.1250 0.1050 0.0575 0.0575
0.75 0.50 0.00 0.1575 0.1400 0.0975 0.1150
0.75 0.95 0.00 0.2625 0.1825 0.2475 0.2000
0.75 0.00 0.50 0.2300 0.1850 0.0600 0.0700
0.75 0.50 0.50 0.1800 0.1700 0.0850 0.0775
0.75 0.95 0.50 0.1625 0.1150 0.1425 0.1225
0.75 0.00 0.99 0.6475 0.6050 0.0725 0.0675
0.75 0.50 0.99 0.4975 0.4600 0.1475 0.1450
0.75 0.95 0.99 0.3125 0.1550 0.2850 0.2700
0.50 0.00 0.00 0.1225 0.1000 0.0750 0.0700
0.50 0.50 0.00 0.1350 0.1150 0.0800 0.0900
0.50 0.95 0.00 0.2725 0.1500 0.1650 0.2050
0.50 0.00 0.50 0.2200 0.2150 0.0800 0.0800
0.50 0.50 0.50 0.1900 0.1850 0.0975 0.0900
0.50 0.95 0.50 0.3100 0.1400 0.1700 0.2050
0.50 0.00 0.99 0.4100 0.3325 0.0950 0.0825
0.50 0.50 0.99 0.3400 0.2925 0.1025 0.0800
0.50 0.95 0.99 0.3375 0.1650 0.2000 0.2025
0.25 0.00 0.00 0.1550 0.1200 0.0875 0.0850
0.25 0.50 0.00 0.1375 0.1050 0.0875 0.0725
0.25 0.95 0.00 0.2650 0.1400 0.1525 0.1300
0.25 0.00 0.50 0.1650 0.1275 0.0950 0.0975
0.25 0.50 0.50 0.1250 0.0800 0.0600 0.0575
0.25 0.95 0.50 0.3225 0.1300 0.1300 0.1325
0.25 0.00 0.99 0.2300 0.2025 0.0900 0.0900
0.25 0.50 0.99 0.2350 0.1600 0.1075 0.0850
0.25 0.95 0.99 0.3250 0.1175 0.1025 0.1050

Avg distance 0.1963 0.1423 0.0579 0.0563

the linear heteroscedastic Heckit model. In column 7 are the sizes for
the the linear heteroscedastic Heckit model that includes x, w, cross
products and squares. In each case, the largest size for the nominal
10% test is .20. While high, this is a vast improvement over the usual
t-tests that ignore heteroscedasticity altogether.
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It is particularly striking how bad the usual tests perform under
high levels of truncation and correlation between errors. Surely tests
here have high power, but a size near 50% makes them unusable. The
bootstrap heteroscedastic tests at their worst have a size near 28%.
This occurs when the x and w are highly collinear. With the addition
of extra regressors to the model that are also highly collinear, it is not
all that surprising that the proposed estimator performs badly here.
One can speculate that proper specification of the heteroscedasticity
function in the estimator should improve performance.2

7. Conclusion

It is pretty clear from the results that ignoring heteroscedasticity in
a selectivity model can be dangerous. The usual 2-step Heckit estima-
tor is seriously biased and subsequent t-tests of regression coefficients
can suffer from large ”size distortion.” Although there are several non-
parametric and semiparametric estimators for this model, they are not
nearly as easy to estimate as the ones proposed here. The estimators
here can be computed using standard regression software equipped with
what has come to be known as X,Y bootstrap algorithms and includes
Limdep and STATA. The performance of the estimators in our limited
Monte Carlo exercise is promising. Size distortion is greatly reduced
and nearly disappears when the data are not too severely heteroscedas-
tic. When the data are not heteroscedastic, the test still works in the
sense that it has the desired size. On the other hand, for point esti-
mation, these estimators leave much to be desired. The linear model
adds terms to the usual Heckit that are highly collinear with the origi-
nal regressors and amongst themselves. This causes precision to suffer,
and in most cases, to suffer badly. However, tests based on the more
precise, yet badly biased, homoscedastic Heckit are not acceptable.

An obvious weakness of the simple estimators proposed here is that
the model to which they are applied is probably not very realistic. To
us, it is hard to believe that the regression equation is heteroscedastic,
but the underlying selection equation is not. It stands to reason that
either both are homoscedastic or neither is. The underlying decisions
are being made by the same individual, why would the error variances
be different for one kind of decision and not the other? The solution

2Actually, we tried this. Recall that the DGP function includes a variable, v
that is omitted from estimation. To test this thesis we run another set of experi-
ments where v is omitted from the model (5.3). While results improved some, the
improvement was not dramatic enough to convince us that better specification of q
would help. On the other hand, heteroscedasticity is very severe at this point and
probably exceeds that which is found in most data.
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would be to relax homoscedasticity of the selection equation and that
would require either a semiparametric approach like the ones we have
tried to avoid using or the use of a traditional MLE estimator of the
heteroscedastic probit model that requires knowledge of the selection
equation’s deterministic scedasticity function. The good news about
this prospect is that such models are easily estimated in STATA and
other econometric software programs and our simple estimator could
still be applied as a second step.
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