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ABSTRACT  

Breast cancer is the second leading cause of cancer deaths among women in the United States. 
Although mortality rates have been decreasing over the past decade, it is important to continue to make 
advances in diagnostic procedures as early detection vastly improves chances for survival.  

Our goal for this study is to identify a data mining model that accurately predicts the presence of a 
malignant tumor using data from fine needle aspiration (FNA) with visual interpretation. Compared with 
other methods of diagnosis, FNA displays the highest likelihood for improvement in sensitivity. 
Furthermore, we aim to identify the variables most closely associated with accurate outcome prediction. 
We utilize the Wisconsin Breast Cancer dataset which contains 699 clinical case samples (65.52% 
benign and 34.48% malignant) assessing the nuclear features of the FNA. 

We analyze a variety of traditional and modern models, including: logistic regression, decision tree, neural 
network, support vector machine, gradient boosting, and random forest. Prior to model building, we used 
the weights of evidence (WOE) approach to account for the high dimensionality of the categorical 
variables and variable selection methods were employed. Ultimately, the gradient boosting model utilizing 
a principal component variable reduction method was selected as the best prediction model with a 2.4% 
misclassification rate, 96.27% specificity, 100% sensitivity, 0.963 Kolmogorov-Smirnov statistic, 0.985 
Gini coefficient, and 0.992 ROC index for the validation data. Additionally, the uniformity of cell shape and 
size, bare nuclei, and bland chromatin were consistently identified as the most important FNA 
characteristics across variable selection methods. These results suggest that future research should 
attempt to refine the techniques used to determine these specific model inputs. Greater accuracy in 
characterizing the FNA attributes will allow researchers to develop more promising models for early 
detection. 

INTRODUCTION  

Over the past few decades, public awareness and scientific research concerning breast cancer has 
increased immensely. Unfortunately, breast cancer continues to be the second leading cause of cancer 
deaths among women in the United States, second only to lung cancer. Recent studies estimate 
approximately 15% of newly-diagnosed cancer patients will die in 2015. [1]  

Early detection is critical to reducing the mortality rate. Currently, there are 3 methods that are commonly 
used to diagnose cancer, including: mammography, fine needle aspiration (FNA) with visual 
interpretation, and surgical biopsy. Surgical biopsy has the highest sensitivity, near 100%. However, due 
to the high costs associated with surgical biopsy, researchers are attempting to find ways to improve the 
sensitivity of both mammography and FNA. Studies show the sensitivity of mammography to fluctuate 
between 68% and 79%.[2] Unfortunately, limitations including variation in age, breast density, and 
availability of technology prevent researchers from significantly improving the sensitivity of 
mammography.[3-5] However, these limitations are less severe for FNA with visual interpretations and 
studies have found sensitivity to vary between 65% and 95%.[6] Additionally, according to the University of 
California San Francisco (UCSF) Medical Center, FNA biopsies are only minimally invasive and can be 
completed within minutes. Furthermore, the results of FNA biopsies are generally available very quickly. 
The rate of false negatives for FNA diagnosis is approximately 5% when combined with a clinical exam 
and a mammogram. [7] 

Our goal is thus to utilize various data mining techniques to identify a diagnostic model that most 
accurately predicts the presence of a malignant tumor using data from FNA with visual interpretation. 
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Additionally, we seek to identify the most significant characteristics (input variables) of the fine needle 
aspirates that aid in accurate diagnosis. 

BACKGROUND & METHODOLOGY 

There is considerable research regarding breast cancer diagnostics. Literature review helped to identify 
some of the most promising data mining models for success. After identifying the models, further research 
into the methods employed by these models assisted in variable selection and developing model 
specifications. Although breast cancer specific research was not always available for some of the newer 
models, other health related studies helped to lay a framework for working with the data.  

LITERATURE REVIEW/BACKGROUND 

Cancer is a disease caused by the uncontrolled division of abnormal cells, often presenting in the form of 
malignant tumors. Therefore, breast cancer is a malignant tumor that starts in the breast. In recent years, 
breast cancer survival rates have increased and the number of deaths has declined due to improvements 
across a number of factors including early detection, treatment methods, and understanding of the 
disease. 

Fine needle aspiration (FNA) is both an accurate and cost effective method of diagnosis. Researchers 
have been working diligently over the past decade to improve the sensitivity of this process. In addition to 
advances in technology and visual interpretation, researchers have been using various data mining 
methods to identify the key factors that can help doctors correctly diagnose malignant tumors. 

Studies show the reporting sensitivity of mammography and ultrasound to vary with radiologists’ 
experience. [8] However, computer decision aids can improve the radiologists’ ability to correctly diagnose 
the malignancy of breast tumors. As a result, researchers have attempted to develop accurate decision 
aids to minimize the potential for interpretation errors by radiologists. Floyd et al. developed an artificial 
neural network (ANN) to predict the malignancy of breast cancer tumors from mammographic findings. 
This study found that the ANN model was significantly more accurate than the radiologists interpreting the 
results. [9]  

Traditionally, researchers used logistic regression models and spent considerable time refining these 
models. Delen et al. compared three common data mining models as they related to breast cancer 
survivability, including logistic regression, decision trees, and artificial neural networks (ANN). This study 
found the decision trees to be the most accurate, with 93.6% accuracy. [10] 

More recent studies include the use of newer data mining tools such as naïve bayes, support vector 
machine (SVM), radial basis neural network, and classification and regression trees (CART). Aruna et al. 
compared these newer models in addition to decision trees and found out that with respect to sensitivity, 
specificity, accuracy, and precision, the SVM with radial basis function kernel outperforms other 
classifiers. [11]  

As stated previously, research dedicated solely to breast cancer diagnosis is limited for some data mining 
methods when compared to the total healthcare field. In order to identify other models that could be 
successful, we undertook a comprehensive literature review relating specifically to data mining and 
diagnosis. This comprehensive review provided further clarification of the most promising modern data 
mining methods. 

In their study, Statnikov et al. compared support vector machines and random forest data mining methods 
with respect to gene expression microarrays. Microarrays are often used to aid in the diagnosis and 
prediction of clinical outcomes for cancer. This study found that support vector machines outperform 
random forest classifiers.[12] Nonetheless, the findings of Diaz-Uriarte and De Andres indicate that random 
forest classifiers have comparable performance to the support vector machines. [13]  

Doyle et al. discussed the challenges of using computerized image analysis programs to examine tissue 
samples and identified a boosting model to develop an algorithm for accurate diagnosis.[14] Teramoto 
highlighted the capabilities of balanced gradient boosting when using imbalanced data as it relates to 
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outcome predication. This study found the balanced gradient boosting model to be superior to other 
supervised learning algorithms, including random forest and support vector machines.[15] 

DATA DESCRIPTION & PREPARTION 

This study utilizes the 1991 Wisconsin Breast Cancer Database, originally compiled by Dr. William H. 
Wolberg and available within the UCI Machine Learning Repository website. 

The dataset contains 699 clinical case samples assessing the nuclear features of FNAs taken from 
patients’ breasts. There are 11 attributes per observation; including the ID and binary target variable.  The 
target variable diagnoses whether the tumor is benign (65.52% of cases) or malignant (34.48% of cases). 
The remaining input variables are measured on an ordinal scale (1-10), with a value of 1 indicating a 
normal state and a value of 10 indicating a highly abnormal state. Display 1 shows the variable names, 
roles, and measurement levels. 

 

Display 1. List of variable names, roles, and measurement levels 

There were 16 missing values in this dataset. Due to the small percentage of missing values (2.3%), we 
excluded these cases from the analysis. Additionally, there were 54 duplicated instances. However, there 
were not enough information regarding these instances (whether errors, accidental duplications, or 
repeated measurements) to exclude them from the analysis. 

Each categorical input variable has 10 levels. Although the typical modeling approach would include the 
use of dummy variables, this would lead to a tremendous increase in dimensionality and the possibility of 
overfitting in the training data. In order to address these issues, we used the weights of evidence (WOE) 
approach to convert the categorical variables into numerical values. The WOE approach is a quantitative 
method used to measure the association between an input variable and target variable. This method was 
originally developed for medical diagnosis, in which the magnitude of the weights depended upon the 
measured association of a symptom and the presence of a disease. These weights were then used to 
help estimate the probability of a positive diagnosis based on presence or absence of symptoms.  

 

Display 2. Output variables for Weight of Evidence 
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For WOE approach, consider a binary target 𝑌, with levels; 0 and 1, where 𝑌 = 1 is the event of interest. 

Now, consider an input variable 𝑋 with “𝑚” categories. Then the weight of evidence is calculated as 

𝑾𝑶𝑬𝒊 = 𝐥𝐨𝐠
𝑷(𝑿 = 𝒙𝒊|𝒀 = 𝟏)

𝑷(𝑿 = 𝒙𝒊|𝒀 = 𝟎)
         𝒇𝒐𝒓  𝒊 = 𝟏, 𝟐, ⋯ , 𝒎 

We implemented the WOE approach via the interactive grouping node in SAS® Enterprise Miner™. 
Display 2 provides the output variable results from the node. Further analysis of the summary statistics of 
the newly created WOE variables as shown in Display 3 does not give any indication that variable 
transformation is necessary.  

 

Display 3. Weight of Evidence variable summary statistics 

METHODOLOGY 

We followed the Cross Industry Standard Process for Data Mining (CRISP-DM) modeling approach. The 
five phases in this process include: understanding the business problem, understanding the data, data 
preparation, modeling, evaluation and deployment. To ensure honest assessment of the models built, we 
partitioned the data into training (70%) and validation (30%) subsets. Since the dataset was imbalanced, 
prior probabilities were set to account for oversampling.  

 
 
Display 4. Variable selection Process Flow 

SAS® Enterprise Miner™ 13.1 provides many new models, including support vector machine (SVM), 
random forest, and gradient boosting. These newer models were included in the analysis along with the 
more traditional logistic regression, decision tree, and neural network. As previously stated, our main goal 
for this study is to build a diagnostic model that most accurately predicts the presence of a malignant 
tumor. In addition, we would expect this model to help identify the FNA characteristics with highest 
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importance to accurate outcome prediction. Consequently, we implemented several variable selection 
nodes to select the most significant input variables, including: variable selection, variable clustering, 
decision tree, partial least squares, principal component analysis, regression, and LARS (Display 4). 
Among these variable reduction techniques, the principal components were the most significant variables 
in reducing model assessment statistics. 

Principal component analysis (PCA) is a technique used to convert a set of potentially correlated 
observations into sets of linearly uncorrelated variables. Typically, PCA is used to reduce the 
dimensionality of large multivariate data sets. The first component extracted accounts for the majority of 
the total variance within the variables. As a result, one can expect that this component will be correlated 
with at least some of the observed variables. The second component accounts for a majority of the 
variability not previously explained by the first component. Components continue to be generated in this 
fashion until all of the variability in the data is explained. Subsequently, each new component accounts for 
a progressively smaller amount of variance, explaining why only the first few components are typically 
retained for model building. Interpretation of the principal components is based upon determining which 
observed variables are correlated to the components. In this analysis, a correlation value of 0.5 in 
absolute value is deemed significant. 

We considered the following models in our analysis: logistic regression with variation in variable selection 
criteria (default, stepwise, backward, decision tree, principal components), decision tree with variation in 
splitting rule target criteria (default, entropy, Gini, number of branches), neural and auto neural networks 
via variable selection, gradient boosting via variable selection, random forest via variable selection, 
support vector machine with variation in kernel function (linear, sigmoid, polynomial) via variable 
selection. Display 5 shows the process flow diagram for this study. 

 

Display 5. Process flow diagram 

Originally, we chose the validation misclassification rate for model selection criteria. However, it was 
determined that the best model could not be selected by this statistic alone as several models had 
equivalent values. Ultimately, we included in the model selection criterion; misclassification rate, Gini 
coefficient, Kolmogorov-Smirnov (KS) statistic, ROC index, sensitivity and specificity for the validation 
data. 

In selecting the best model, we gave highest importance to the misclassification rate, or number of 
incorrect diagnoses, followed closely by the specificity (true negative rate) and sensitivity, also known as 
the true positive rate. The ROC index graphically displays the tradeoff for a higher true positive rate, 
plotting the true positive rate by the false positive rate. We used the KS statistic to measure goodness of 
fit. Lastly, although traditionally used to quantify income inequality, we included the Gini coefficient as a 
measure of heterogeneity, or frequency dispersion, of the data. 
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RESULTS & DISCUSSION 

Our primary objective is to develop an accurate data mining model to diagnose the malignancy of breast 
cancer tumors. After comparing all of the models, we selected the gradient boosting via principal 
components (Boosting via PC) as the best model, exhibiting the following validation statistics: 0.024 
misclassification rate, 0.985 Gini coefficient, 0.963 KS statistic, 0.992 ROC index, 100% sensitivity and 
96.27% specificity. When compared to the other models, the selected model has the highest sensitivity 
and KS statistic, lowest misclassification rate, and the second highest Gini coefficient, ROC index and 
specificity as shown in Table 1.  

Model Description Misclassification 
rate 

KS 
Statistic 

Gini 
Coefficient 

ROC 
Index 

Sensitivity Specificity 

Boosting via PC 0.024 0.963 0.985 0.992 100.00% 96.27% 

Decision tree via PC 0.029 0.949 0.949 0.974 98.63% 96.27% 

HP Forest via PC 0.029 0.949 0.969 0.984 98.63% 96.27% 

Autoneural via 
regression 

0.029 0.943 0.979 0.990 97.26% 97.01% 

Linear Logistic 
regression 

0.034 0.940 0.982 0.991 97.26% 96.27% 

HP Forest via 
regression 

0.034 0.940 0.982 0.991 97.26% 96.27% 

HP Forest via PLS 0.034 0.935 0.977 0.989 97.26% 96.27% 

Autoneural (default) 0.034 0.963 0.988 0.994 95.89% 97.01% 

Decision tree (3 
branches) 

0.043 0.920 0.937 0.968 97.26% 94.78% 

SVM (Linear) 0.043 0.942 0.984 0.992 95.89% 95.52% 

Table 1. Model assessment fit statistics 

In general, boosting models are supervised learning ensemble models that combine the best aspects of 
weaker models to develop one strong model. Specifically, gradient boosting models combine predictions 
from a set of decision trees into a single prediction model. The ultimate goal of this technique is to 
increase the probability of selecting an observation that aids in predicting the target variable accurately.  
This technique builds a series of incrementally improved decision trees through resampling of the data set 
with replacement to produce results that form a weighted average of the resampled data. Typically, 
boosting algorithms’ weighting is related to accuracy, placing greater weights on misclassified cases as 
the model develops. 

 

Display 6. Eigenvalues of correlation matrix 
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With respect to the selected gradient boosting model, the first five principal components were used in the 
model building since these components account for 90.48% of the total variability in the data as shown in 
the correlation matrix, Display 6. The first principal component was identified as the most important 
variable for accurate diagnosis; indicated by the number of splitting rules (NRULES) and the variable 
importance (VIMPORTANCE) in Display 7. The classification charts for both the training and validation 
data sets for the gradient boosting are also displayed in Display 8. These plots indicate that the model 
minimizes the misclassification rates and does not indicate overfitting in the training data. 

 

Display 7. Variable Importance using the Boosting model via principal component analysis 

 

Display 8. Classification chart for boosting model via principal component analysis 

Table 2 displays the correlation of the WOE of the observed variables and the principal components.  As 
expected, the first principal component is strongly correlated with all the original variables. In this 
component, the value increased with increasing values in the original variables. Furthermore, this 
component correlates most strongly with the uniformity of cell shape and size and could be interpreted as 
the primary measure of these two attributes. The second and third components are respectively 
correlated with mitosis and clump thickness. The remaining components are not significantly correlated 
with any of the original observed variables. 
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Variable PC_1 PC_2 PC_3 PC_4 PC_5 PC_6 PC_7 PC_8 

WOE_UCSz 0.939 -0.091 0.000 -0.052 -0.007 -0.098 -0.115 -0.170 

WOE_UCSh 0.911 -0.150 0.042 -0.045 -0.087 -0.147 -0.105 -0.267 

WOE_SECS 0.885 -0.036 -0.068 -0.106 0.022 -0.192 -0.244 0.320 

WOE_BC 0.857 -0.144 -0.081 -0.050 0.021 0.463 -0.145 0.009 

WOE_NN 0.834 0.074 -0.143 -0.407 -0.128 0.004 0.309 0.041 

WOE_BN 0.829 -0.153 0.018 0.399 -0.317 0.003 0.139 0.097 

WOE_MAdh 0.828 -0.061 -0.307 0.212 0.376 -0.055 0.163 -0.016 

WOE_CT 0.750 0.017 0.626 -0.010 0.173 0.024 0.105 0.051 

WOE_Mit 0.632 0.761 -0.031 0.108 -0.038 0.033 -0.065 -0.043 

Table 2. Correlation between observed variables and principal components 

Display 9 displays the scatterplots of the first five principal component scores, and shows that the 
components are uncorrelated. In addition, the pairwise scatterplots of the components and the remaining 
component scores indicate that a hyperplane could be constructed that significantly separates malignant 
and benign tumors. 

 
Display 9. Principal Components Matrix 

Our secondary objective for the study is to identify the characteristics of fine needle aspirates with the 
highest importance to outcome prediction. As discussed previously, we used the WOE approach to help 
identify the variables most closely associated with accurate outcome prediction. Display 2 showed the 
Gini statistic and information value for all of the input variables using the weights of evidence (WOE) 
approach. Variable importance is judged by the Gini statistic and information value. This approach 
identifies the uniformity of cell shape and size, bare nuclei, and bland chromatin as the most important 
input variables. These results are reinforced by other variable selection techniques, as shown in Table 3. 
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Variable 
selection node 

Variable 
Clustering node 

Decision 
tree 

Partial least 
squares LARS Regression 

BN UCSz UCSh UCSz UCSz BN 

BC UCSh UCSz UCSh UCSh CT 

CT SECS BC BN BN UCSz 

Madh BN BN SECS SECS  

NN BC  BC BC  

SECS NN  NC NC  

UCSh Madh  Madh Madh  

UCSz CT  CT CT  

    Mitosis  

Table 3. Summary of variables selected by specific nodes using weight of evidence 

Across all variable selection methods, uniformity of cell size and shape, bland chromatin and bare nuclei 
were selected. The regression selection approach however deviated slightly from the variables selected 
by the other methods; selecting clump thickness instead of uniformity of cell shape and bland chromatin. 
The findings of this study would encourage technological advances aimed at ensuring the reliability and 
refinement of these measurements via FNA procedures. 

CONCLUSION 

This study aimed to identify a diagnostic model using data mining techniques that most accurately 
predicts the presence of a malignant tumor using data from fine needle aspiration (FNA) with visual 
interpretation. Furthermore, this study sought to identify the characteristics most closely associated with 
accurate outcome predictions. A variety of data mining models were considered, but the gradient boosting 
model using principal components variable selection was ultimately selected as the best model, based on 
a number of validation data statistics. In addition, four input variables were identified as significant to 
outcome prediction, including: uniformity of cell shape and size, bare nuclei, and bland chromatin. These 
results indicate that outcome prediction can be further improved by refining the methods used to identify 
and measure these characteristics. For example, technological advances that improve the reliability of 
uniformity estimates could improve the results of the data mining models. Finally, utilizing this model 
would help decrease interpretation errors by radiologists. In order to validate these findings, it is important 
for further research to be conducted; including applying this method to other types of malignant tumor 
diagnosis. 
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