SAS® GLOBAL FORUM 2016

IMAGINE. CREATE. INNOVATE. **Forecasting Frequency of Terrorist attacks in United States and Predicting the Factors that determine Success of Attacks using SAS** Forecast Studio[™] and SAS Enterprise Miner[™]

Sri Harsha Ramineni Koteswarrao Sriram

#SASGF

Forecasting Frequency of Terrorist attacks in United States and Predicting the Factors that determine Success of Attacks using SAS Forecast Studio[™] and SAS Enterprise Miner[™] SriHarsha Ramineni, Koteswara Rao Sriram

ABSTRACT

The importance of understanding terrorism in the United States of America assumed heightened prominence in the wake of the coordinated attacks of September 11, 2001. Yet surprisingly little is known about the frequency of attacks that may happen in the future and the factors that lead to a successful terrorist attack. This research is aimed at forecasting the frequency of attacks per annual basis in United States and to determine the factors that contribute to its success.

Using the data acquired from Global Terrorism Database (GTD), we tested our hypothesis by examining the frequency of attacks on annual basis from 1972 to 2014 using SAS[®] Enterprise Miner and SAS[®] Forecasting Studio. The data set has 2,683 observations. Our Forecasting model predicts that there may be at least 16 attacks every year for the next 4 years. From our study of factors which contribute to the success of the terrorist attack, we discovered that attack type, weapons used in the attack, place of attack and type of target play pivotal roles in determining the success of a terrorist attack. Results reveal that the government may be successful in averting assassination attempts but may fail to prevent armed assaults and facilities/infrastructure attacks. So additional security may need to be provided to important facilities to prevent further attacks from being successful. Also results further reveal that it is possible to reduce the forecasted number of attacks by raising defense spending and by putting an end to the raging war in middle east.

METHOD

• Majority of the data was gathered from Global Terrorism Database (GTD) whereas the rest of the data was collected from various sources which include U.S. Economy, U.S census and so on.

• Two different data sets were used for forecasting the frequency and predicting the outcome of a terrorist attack. For forecasting, the dataset with 11 variables was used with success as target whereas the dataset used for forecasting has 8 variables.

Gathering Data from various Sources

•For missing values, mode imputation for class variables and mean imputation for interval variables was performed. •The data set that had information about terrorist attacks in different countries was then filtered to obtain terrorist attacks in U.S. alone.

MS in MIS, SAS[®] and OSU Data Mining Certificate, Oklahoma State University

Figure 1: Procedure followed for Research

Exploratory Analysis:

•Out of all the events, Bombing/Explosion was used on many instances which contributes around 51.42%, next highest in the list is Facility/Infrastructure attack with 30.54% and third one in the list is Armed Assault with 7.97% of all the terrorist events happened until 2014.

•. Weapon type of Explosives/Bombs/Dynamite was most widely used by terrorists with 51.51%, next in the list is Incendiary with 29.48% and third one in the list is Firearms with 13.05% whereas all other weapon type's contribution is very low when compared to the top three types.

•An Interesting fact is that there is not even a single state without any terrorist attack in the last 44 years. Highest number of terrorist attacks happened in California (588), second in New York (500) and the lowest in Rhode Island, Kentucky and Wyoming (2). Coastal states are more prone to attacks.

•For target type, Business entities are in the top with 27.58%, followed by Government entities with 12.25% and third is Private Citizens & Property with 11.43% of all the terrorist events.

Figure 4: Attack Location

Template provided by ePosterBoards LLC

Forecasting Frequency of Terrorist attacks in United States and Predicting the Factors that determine Success of Attacks using SAS Forecast Studio[™] and SAS Enterprise Miner[™]

RESULTS CONTINUED

•Frequency of attacks has a range of 143 with 149 being the highest and 6 being the lowest. The highest number of attacks occurred in the year of 1975 whereas the lowest number of attacks occurred in the year of 2006.

•Population in the U.S is steadily rising over the years with 2014 being the highest with a population of 318.86 million and 1972 being the least with 108.96 million.

•U.S defense budget had a significant rise over the years. This might be a reason which led to the less frequency of attacks in the recent years compared to the past.

•There is no particular trend in the GDP growth over the years and is following a random trend. The economy had a highest growth of 7.3% in the year 1984 and had a breakdown in the year 2009 with a value of -2.8%.

Modeling using SAS Enterprise Miner[™]:

•Attack type & Weapon type are most important variables followed by State and Target type in predicting the success/failure of a terrorist attack. Other variables Specificity, Multiple, Extended, Suicide & Vicinity don't contribute much in predicting the success/failure of a terrorist attack.

•Models were built to predict the outcome of a terrorist attack with success as target and of all the model built Neural Network was the best model in terms of Validation Misclassification Rate of 0.163569.

SriHarsha Ramineni, Koteswara Rao Sriram

MS in MIS, SAS[®] and OSU Data Mining Certificate, Oklahoma State University

Figure 6: Exploratory Analysis of Independent variables

Model Node	Model Description	Target Variable	Target Label	Selection Criterion: Valid: Misclassifica tion Rate
Neural	Neural Net	Success		0.163569
AutoNeural	AutoNeural	Success		0.163569
Ensmbl	Ensemble	Success		0.164808
Tree	Decision Tr	Success		0.167286
LARS	LARS	Success		0.17596
Reg	Regression	Success		0.179678
SVM	SVM	Success		0.180917

Figure 8: Model Comparison

•The neural network has a Validation Misclassification Rate of 0.162569 and Validation Average Squared Error of 0.134071. Forecasting Frequency using SAS Forecast Studio™: •Out of all the models built, ARIMA model with events turned out to be the best model with a MAPE value of 21.21. •Population and Presidential Elections turned out to be significant independent variables.

•There is one significant outlier at 1977 with an estimate of 39.64 and a high t-value of 6.31.

Frequency, Frequency: MAPE= 21.21					
✓ Active series Forecast Model: LEAF_4COPY1(automatic selection) Set this model as forecast model					
Model	Туре	Read-Only	/ MAPE		
LEAF_4COPY1	Custom	No	21.21 🔺		
Generated ARIMA Model (LEAF_4)	Generated	Yes	21.57		
Generated ARIMA Model (LEAF_5)	Generated	Yes	24.55		
LEAF_4COPY2	Custom	No	25.40		
COMBINEDMODEL 1	Combination (Custom)	Yes	26.43		
LEAF_5COPY1	Custom	No	32.93		
Generated Smoothing Model (LEAF_6)	Generated	Yes	35.16 💌		

Figure 10: Model statistics for Forecasting

•PULSE_1983, PULSE_1999, PULSE_2008, TEMP_1975_1978 and LS_1994_1995 are significant at 5% level of significance. The event *TEMP_1983_1984* deems to be insignificant but still has an estimate of 21.37.

•All the prediction errors for frequency for forecasting lie within two standard deviation which indicate the model is significant.

•Also if we look at the ACF, PACF and IACF plots all the values lie within which indicates that the series is stationary.

RESULTS CONTINUED

Target	Target Label	Fit Statistics	Statistics Label	Train	Validation	Test
Success		_DFT_	Total Degrees of Freedom	rees of Freedom 1876		
Success		_DFE_	Degrees of Freedom for Error	1584		
Success		_DFM_	Model Degrees of Freedom	292		
Success		_NW_	Number of Estimated Weights	292		
Success		_AIC_	Akaike's Information Criterion	2114.591		
Success		_SBC_	Schwarz's Bayesian Criterion	3731.365		
Success		_ASE_	Average Squared Error	0.126007	0.134071	
Success		_MAX_	Maximum Absolute Error	0.955415	0.973813	
Success		_DIV_	Divisor for ASE	3752	1614	
Success		_NOBS_	Sum of Frequencies	1876	807	
Success		_RASE_	Root Average Squared Error	0.354974	0.366157	
Success		_SSE_	Sum of Squared Errors	472.7768	216.3904	
Success		_SUMW_	Sum of Case Weights Times Freq	3752	1614	
Success		_FPE_	Final Prediction Error	0.172464		
Success		_MSE_	Mean Squared Error	0.149235	0.134071	
Success		_RFPE_	Root Final Prediction Error	0.415287		
Success		_RMSE_	Root Mean Squared Error	0.38631	0.366157	
Success		_AVERR_	Average Error Function	0.40794	0.432379	
Success		_ERR_	Error Function	1530.591	697.8598	
Success		_MISC_	Misclassification Rate	0.158849	0.163569	
Success		_WRONG_	Number of Wrong Classifications	298	132	

Figure 9: Best model fit statis

Component	Parameter	Estimate	Standard Error	t Value	Apr Pr≎
Frequency	AR1_1	-0.64938	0.16418	-3.96	0.000 🔺
US_Pop_Mill	SCALE	14.52878	6.28475	2.31	0.029
US_Pop_Mill	NUM1_1	14.69690	6.35521	2.31	0.029
US_Presidential_Elections	SCALE	-5.28430	2.40169	-2.20	0.037
US_Def_Budget_Mill	SCALE	-0.06325	0.03514	-1.80	0.084
US_GDP_PERCENT_GR	SCALE	-0.50713	0.70632	-0.72	0.479
PULSE_1983	SCALE	-33.17478	15.76197	-2.10	0.045
PULSE_1999	SCALE	15.71264	6.38714	2.46	0.021
PULSE_2008	SCALE	12.48140	6.80501	1.83	0.078
TEMP_1975_1978	SCALE	73.54095	18.38807	4.00	0.000
TEMP_1983_1984	SCALE	21.37472	15.52991	1.38	0.180 🗾
LS_1994_1995	SCALE	14.63408	5.73402	2.55	0.017
A001JAN1977D	SCALE	39.64768	6.28639	6.31	<.000 🔽
•					Þ

Figure 11: Parameter Estimates of Best Model

st	i	С	S

Template provided by ePosterBoards LLC

Forecasting Frequency of Terrorist attacks in United States and Predicting the Factors that determine Success of Attacks using SAS Forecast Studio[™] and SAS Enterprise Miner[™]

MS in MIS, SAS[®] and OSU Data Mining Certificate, Oklahoma State University

Figure 14: Scenario 1

Scenarios for forecast:

•The presidential election has a positive impact in reducing the frequency of attacks compared to the year without presidential election. This makes sense as the security measures will be greatly increased for conduction smooth flow of elections.

•Scenario with change in budget from the above scenario, reduced the defense budget to 600 mill for 2015-17 to observe its effect on the frequency of attacks.

•Decrease in the defense budget resulted in an increase in number of attacks for the scenario years of 2015-17, even for an presidential election year, the number of attacks has increased greatly because of reduce in defense budget.

SriHarsha Ramineni, Koteswara Rao Sriram

- terrorist attack

- and by putting an end to the raging war in middle east.

- <u>http://www.start.umd.edu/gtd/contact/</u>

We thank Dr. Goutam Chakraborty, Professor, Department of Marketing and Founder of SAS and OSU Data Mining Certificate Program – Oklahoma State University for his support throughout this research.

CONCLUSIONS

•Our Forecasting model predicts that there may be at least 16 attacks every year for the next 4 years •From our study of factors which contribute to the success of the terrorist attack, we discovered that attack type, weapons used in the attack, place of attack and type of target play pivotal roles in determining the success of a

•Results reveal that the government may be successful in averting assassination attempts but may fail to prevent armed assaults and facilities/infrastructure attacks.

•So additional security may need to be provided to important facilities to prevent further attacks from being successful. •Also results further reveal that it is possible to reduce the forecasted number of attacks by raising defense spending

REFERENCES

•<u>http://www.usgovernmentspending.com/us_gdp_history</u>

• <u>http://www.multpl.com/united-states-population/table</u>

<u>http://www.usfederalbudget.us/budget_pie_gs.php</u>

ACKNOWLEDGEMENT

Template provided by ePosterBoards LLC

LAS VEGAS | APRIL 18-21 #SASGF

IMAGINE. CREATE. INNOVATE.

