
1

Paper 3390 - 2015

Working with PROC FEDSQL in SAS® 9.4

Zabiulla Mohammed and Ganesh Kumar Gangarajula, Oklahoma State University

Pradeep Kalakota, Business Intelligence Developer II, FHL Bank of Des Moines

ABSTRACT

Working with multiple data sources from multiple vendors simultaneously in SAS had not been straight
forward until the PROC FEDSQL was introduced in the SAS® 9.4 release. FEDSQL, Federated Query
Language is a vendor independent language which provides a common SQL syntax to communicate across
multiple relational databases without having to worry about vendor specific SQL syntax. PROC FEDSQL is
SAS implementation of the FEDSQL language. PROC FEDSQL enables us to write federated queries which
can be used to perform joins on tables from different databases with a single query, without having to worry
about loading the tables into SAS individually and combining them using DATA step and PROC SQL
statements. The objective of this paper is to demonstrate the working of PROC FEDSQL to fetch data from
multiple data sources such as Microsoft SQL Server database, MySQL database and a SAS dataset and
run federated queries on all the data sources. Other powerful features of PROC FEDSQL such as
transactions and FEDSQL pass-through facility will be discussed briefly.

INTRODUCTION

FEDSQL is a new addition to SAS 9.4, providing extensive data type support, ability to access and manage
large data through multiple data sources in an optimized multi-threaded way for high performance. To
support data from multiple data sources, FEDSQL follows a common SQL syntax, which is neutral to all the
data sources and allows the users to not submit individual queries which are specific to each data source.

BENEFITS OF FEDSQL

The benefits of FEDSQL exceed that of SQL as described below:

 The conformance of FEDSQL to ANSI SQL: 1999 core standard allows it to process queries in its own
language and the native languages of other data sources which conform to the standard. This
conformance makes the FEDSQL queries vendor neutral.

 FEDSQL provides precision via new data types such as bigint, decimal, double etc. Apart from
providing extended data type support, FEDSQL allows translation from and to legacy SAS data types
such as SAS numeric and SAS character.

 FEDSQL can handle federated queries to join tables from multiple data sources and provide a single
dataset.

 FEDSQL can generate the resultant data to be in any of the supported data sources irrespective of
what the input data sources. This enables the users to tailor the data sources as needed.

WAYS TO RUN FEDSQL PROGRAMS

FEDSQL code be submitted in multiple ways:

 Using PROC FEDSQL from Base SAS Language Interface

 JDBC, ODBC or OLE DB client using SAS Federation Server

 Base SAS session using SAS Federation Server LIBNAME engine and PROC SQL pass-through

 From a DS2 program

 From SPD Server using SQL pass-through facility or through an ODBC or JDBC client

2

DATA SOURCE SUPPORT

FEDSQL supports a wide range of data sources from multiple vendors as listed below:

FEDSQL Data Sources FEDSQL Data Sources

Aster SAP (Read-only)

DB2 for UNIX & PC Operating Environments SAP HANA

Greenplum SASHDAT files

Hadoop (Hive and HDMD) Sybase IQ

Memory Data Store (MDS) SAS data sets

MySQL
SAS Scalable Performance Data Engine (SPD
Engine) data sets

Netezza Teradata

ODBC databases (such as Microsoft SQL Server) Oracle

Table 1. FEDSQL Data source support

DATA TYPE SUPPORT

FEDSQL supports a wide range of data types than the previous SAS SQL implementations

FEDSQL Data types FEDSQL Data types

BIGINT SMALLINT

BINARY TIME

CHAR TIMESTAMP

DATE TINYINT

DOUBLE VARBINARY

DECIMAL|NUMERIC VARCHAR

FLOAT NCHAR

INTEGER NVARCHAR

Table 2. FEDSQL Data Types

PROC SQL VS PROC FEDSQL INTERNALS

PROC FEDSQL queries are executed via implicit pass through mechanism. When SQL queries are
submitted using PROC FEDSQL, the queries are converted to the target data source specific code that is
passed down to the target database for execution. By using implicit pass-through, FEDSQL can leverage
the data source specific capabilities in order to reduce the query response time. Another advantage of
implicit pass through is that the target specific data need not be transmitted to FEDSQL side for processing.

To understand PROC FEDSQL’s working we compared the execution methods with those of PROC SQL
query using the SAS’s undocumented _METHOD option. For illustrative purposes we used the same ODBC
connection to Microsoft SQL Server and the same query had been submitted using the two procedures.

3

PROC SQL CODE WITH _METHOD OPTION

LIBNAME MSSQL ODBC DSN="MSSQLSERVER";

/*Count Query using PROC SQL and _METHOD option*/

PROC SQL _METHOD;

SELECT COUNT (*) AS FREQS, COURSEID, GRADE, SEMESTER FROM

MSSQL.STUDENT_GRADES GROUP BY COURSEID, GRADE, SEMESTER;

QUIT;

PROC FEDQL CODE WITH _METHOD OPTION

LIBNAME MSSQL ODBC DSN="MSSQLSERVER";

/*Count Query using PROC FEDSQL and _METHOD option */

PROC FEDSQL _METHOD;

SELECT COUNT (*) AS FREQS, COURSEID, GRADE, SEMESTER FROM

MSSQL.STUDENT_GRADES GROUP BY COURSEID, GRADE, SEMESTER;

QUIT;

While both the above procedures returned the same results, the way both the queries are handled by SAS
system are different. The log files of both the procedures are as follows:

Figure 1. SQL Execution Log

Figure 2. FEDSQL Execution Log

The _METHOD is an undocumented SAS option which outputs the way a SQL query is processed by the
SAS system. In the case of PROC SQL, the SQL execution methods SQSXSLCT and SQXEXTR are
chosen by the SAS system to execute in the SAS environment where as in the FEDSQL method, the
complete query is pushed down to Microsoft SQL server for execution.

PROC SQL VS PROC FEDSQL INTERNALS

One of the main advantages of FEDSQL is that it brings in a lot of data types than what is supported by
previous SQL flavors. This allows FEDSQL queries to run queries and return results with more precision.

To understand how new data types can increase precision in FEDSQL, we did a little experiment on how
FEDSQL works on BIGINT values on a Microsoft SQL Server and compared it with PROC SQL results.
We created a table called “t_BigInteger” with a single field “Big_Integer” of type bigint. The table description
and the data from Microsoft SQL Server is as follows:

Figure 3. Table schema from Microsoft SQL Server

4

Figure 4.Values from t_BigInteger table

PROC SQL vs. PROC FEDSQL RESULTS ON BIGINT VALUES

The following code was run using PROC SQL to find out the sum of all values of Big Integer

LIBNAME MSSQL ODBC DSN="MSSQLSERVER";

PROC SQL;

TITLE 'Display using PROC SQL';

SELECT * FROM MSSQL.T_BIGINTEGER;

SELECT SUM (BIG_INTEGER) AS TOTAL_SQL FROM MSSQL.T_BIGINTEGER;

QUIT;

Figure 5. SQL results on bigint values display and sum

PROC SQL displayed inaccurate results for the values on the table as well as their sum. Unless the
programmer is aware of this situation, it is very hard to spot a limitation of this sort on PROC SQL.

The same ODBC connection was used in PROC FEDSQL and the same set of queries were submitted in
a base SAS session.

PROC FEDSQL;

TITLE 'Display using FED SQL';

SELECT * FROM MSSQL.T_BIGINTEGER;

SELECT SUM (BIG_INTEGER) AS TOTAL_FEDSQL FROM MSSQL.T_BIGINTEGER;

QUIT;

PROC FEDSQL on the other hand returned correct values from the table and correct sum value as the
result set.

Figure 6. FEDSQL results on bigint values display and sum

This clearly demonstrates the power of FEDSQL when it comes to providing precision on larger values.

5

FEDERATED QUERIES USING FEDSQL

FEDSQL has the ability to communicate with multiple types of data sources at the same time, divide and
translate the query with respect to the database it is targeted and perform joins by sending the query to the
individual databases. Because the queries are sent down individually to the database, a federated query
can leverage the built in abilities of the data source such as threading, query optimizing, parallel processing
etc. which are specific to the database.

In this section, we will run a federated query to merge three data sources using FEDSQL. The data sources
used are

1. Microsoft SQL Server (Table : Student_Grades)

2. MySQL database (Table : Grades)

3. SAS Dataset (OKSTATE course dataset)

FEDSQL CODE FOR FEDERATD QUERY

PROC FEDSQL _METHOD;

 SELECT S.STUDENTID,

 S.FIRSTNAME,

 S.LASTNAME,

 G.COURSEID,

 G.SEMESTER,

 G.GRADE,

 O.COURSENAME

 FROM MSSQL.STUDENT_GRADES G,

 MYSQLDB.STUDENT S,

 SASGF.OKSTATE O

 WHERE

 S.STUDENTID = G.STUDENTID AND O.COURSE_ID = G.COURSEID;

QUIT;

The federated query above joins data in three tables from different data sources and returns a single
result set as below:

Figure 7. Federated query output using PROC FEDSQL

6

Figure 8. Federated query log

Using _METHOD option, the log returned above explains the methods FEDSQL chose to run the query.
We can see that the number of sorts performed are 2, number of joins performed are 2 and number of
merged joins performed is 1. The execution methods chosen will differ once we try to use a table that has
indexes.

LEVERAGING DATABASE INDEXES IN FEDERATED QUERIES

FEDSQL can leverage the indexes on the data sources to perform faster joins on federated queries. The
methods chosen to perform join will be slightly different than the ones used with the tables that do not have
an index. More importantly, FEDSQL supports the “CREATE INDEX” SQL construct to create indexes
directly on the data base.

The following code creates two indexes on “StudentID” in the tables present in the Microsoft SQL Server
and the MySQL databases.

/*creating Indexes using FEDSQL*/

PROC FEDSQL;

CREATE INDEX STDIDX ON MSSQL.STUDENT_GRADES (STUDENTID);

CREATE INDEX STDIDX ON MYSQLDB.STUDENT (STUDENTID);

QUIT;

Figure 9. Federated query execution log using indexes on the database

7

Once the indexes were created, we submitted the same federated query to examine if the execution steps
were different while using an Index. We can clearly see in the log, that the index selected is STDIDX, which
we created in the previous step. Since indexes are available on the databases, FEDSQL doesn’t do the
sort operation explicitly as it relies on the index information on the database. For this reason, it is important
to have tuned indexes on the data source to expedite the process of joining using federated queries.

SUPPORT FOR TRANSACTIONS

A transaction is an atomic unit of work. In certain instances, there may be a need to treat a group of updates
as a single unit. But, nevertheless, the ability to rollback is needed in case the updates are not successful.

One of the basic requirements while dealing with multiple sources of data bases is the ability to ensure all
the related data is consistent at all times, which is a basic requirement of data integrity. Such ability is
offered by FEDSQL by supporting COMMIT and ROLLBACK statements.

BEGIN statement marks the beginning of a transaction statement which consists of multiple sub statements.
COMMIT statement marks the end of completion of all the statements in the transaction. ROLLBACK
statement ensures that no changes are made due to the transaction.

Syntax:

BEGIN [TRANSACTION];

COMMIT [TRANSACTION];

ROLLBACK [TRANSACTION];

FEDSQL offers transaction management through COMMIT and ROLLBACK. But, by default,
AUTOCOMMIT is turned ON, which makes each single statement get automatically committed and rolled
back if the statement is not successful.

While, transaction management is not offered by many data sources such as SAS, it is offered by data
sources that include Aster, DB2 for UNIX and PC Hosts, Greenplum, Microsoft SQL Server, MySQL, ODBC
databases, and Sybase IQ.

To utilize the transaction management module, AUTOCOMMIT feature needs to be turned off.

COMMAND:

LIBNAME LIBREF SASLIBRARY AUTOCOMMIT= NO;

CONCLUSION

FEDSQL is a new and proprietary SQL implementation of SAS, available in SAS 9.4 FEDSQL is not a
replacement of PROC SQL, but it has many powerful features such as precision via new datatypes, vendor
independency etc. FEDSQL translates queries to vendor specific database native language which reduces
the amount of work done by SAS system by leveraging database specific capabilities. With DS2 becoming
a powerful language in handling data in SAS and FEDSQL’s ability to merge into DS2 programs, this
combination has the potential to make its mark in data processing programming alongside DATA step and
PROC SQL.

REFERENCES

SAS® 9.4 Language Reference, Fourth Edition, Available at
http://support.sas.com/documentation/cdl/en/lrcon/67885/PDF/default/lrcon.pdf

SAS® 9.4 FEDSQL Language Reference, Third Edition. Available at
http://support.sas.com/documentation/cdl/en/fedsqlref/67364/PDF/default/fedsqlref.pdf

Lafler, Kirk Paul. 2013. “Exploring the PROC SQL _METHOD Option.” Proceedings of the SAS Global
2013 Conference. Available at http://support.sas.com/resources/papers/proceedings13/200-2013.pdf

http://support.sas.com/documentation/cdl/en/lrcon/67885/PDF/default/lrcon.pdf
http://support.sas.com/documentation/cdl/en/fedsqlref/67364/PDF/default/fedsqlref.pdf
http://support.sas.com/resources/papers/proceedings13/200-2013.pdf

8

SAS PROC FEDSQL Documentation. Available at
http://support.sas.com/documentation/cdl/en/proc/67327/HTML/default/viewer.htm#n06w5kqwkurgk2n1irj
o6h94fkcq.htm

ACKNOWLEDGMENTS

We thank Dr. Goutam Chakraborty, Ralph A. and Peggy A. Brenneman Professor of Marketing & Founder
of SAS and OSU Data Mining Certificate Program, Oklahoma State University, for his support, guidance
and encouragement throughout our research.

AUTHORS

Zabiulla Mohammed is a Masters’ student in Management Information Systems at Spears School of
Business, Oklahoma State University. He holds SAS Statistical Business Analyst, Predictive Modeler, Base
and Advanced Programmer for SAS 9 Credentials. He has 5 years of experience working with two Fortune
100 companies. He successfully completed SAS and OSU Data Mining Certificate program in December
2014. He has an undergraduate degree in Computer Science and Engineering and has presented various
papers at conferences including JMP Discovery Summit 2014 and SAS Analytics Conference 2014

Ganesh Kumar Gangarajula, is a Masters’ student in Management Information Systems at Spears School
of Business, Oklahoma State University. He has an undergraduate degree in Computer Science &
Engineering. He has a previous work experience of 2.5 years as a Solution Developer for a leading US
Automobile Insurance client. He had successfully completed the SAS & OSU Data Mining Program in the
summer of 2014. He is also a Base SAS® 9 Certified Programmer, SAS® Certified Statistical Business
Analyst. He has also published papers at other conferences which include JMP Discovery Summit 2014,
SAS Analytics Conference 2014 and SAS Analytics Day at OSU 2014.

Pradeep Reddy Kalakota was a Graduate Student at Oklahoma State University and completed OSU and
SAS data mining certification program. He is currently working as Business Intelligence Developer II for
Divisional Risk team at FHL Bank Des Moines. He is a Base SAS® 9 certified Programmer, SAS® Certified
Statistical Business Analyst, SAS® certified Predictive Modeler using Enterprise Miner 7. He has 5 years
of experience in ETL-Data Warehousing at Deloitte Consulting.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the authors at:

Zabiulla Mohammed
Oklahoma State University
zabiulla.mohammed@okstate.edu
https://www.linkedin.com/in/zabiullamohammed

Ganesh Gangarajula
Oklahoma State University
ganesh.gangarajula@okstate.edu
https://www.linkedin.com/in/gangarajulaganesh

Pradeep Reddy Kalakota
Federal Home Loan Bank of Des Moines
pradeep.kalakota@okstate.edu
https://www.linkedin.com/in/pradeepreddykalakota

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

http://support.sas.com/documentation/cdl/en/proc/67327/HTML/default/viewer.htm#n06w5kqwkurgk2n1irjo6h94fkcq.htm
http://support.sas.com/documentation/cdl/en/proc/67327/HTML/default/viewer.htm#n06w5kqwkurgk2n1irjo6h94fkcq.htm
mailto:zabiulla.mohammed@okstate.edu
https://www.linkedin.com/in/zabiullamohammed
mailto:ganesh.gangarajula@okstate.edu
https://www.linkedin.com/in/gangarajulaganesh
mailto:pradeep.kalakota@okstate.edu
https://www.linkedin.com/in/pradeepreddykalakota

