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ABSTRACT  

Product affinity segmentation is a powerful technique for marketers and sales professionals to gain a 
good understanding of customers’ needs, preferences, and purchase behavior. Performing product 
affinity segmentation is quite challenging in practice because product level data usually have high 
skewness, high kurtosis, and large percentage of zero values. The Doughnut clustering method has been 
shown to be effective using real data, and was presented at SAS Global Forum 2013 (Baer & 
Chakraborty, 2013).  However, the Doughnut clustering method is not a panacea for addressing the 
product affinity segmentation problem. There is a clear need for a comprehensive evaluation of this 
method in order to be able to develop generic guidelines for practitioners on when to apply the method. In 
this paper, we meet the need by evaluating the Doughnut clustering method on simulated data with 
different levels of skewness, kurtosis, and percentage of zero values. We developed a five-step approach 
based on Fleishman’s power method to generate synthetic data with prescribed parameters. 
Subsequently, we designed and conducted a set of experiments to apply the Doughnut clustering method 
as well as the traditional K-means method as benchmark on the simulated data. We draw conclusions on 
the performance of the Doughnut clustering method by comparing the clustering validity metric “the ratio 
of between-cluster variance to within-cluster variance” as well as the relative proportion of cluster sizes 
against those of K-means. In certain data situations, the Doughnut clustering method is shown to produce 
an acceptable clustering solution when other approaches fail. 

INTRODUCTION  

It is critical for marketers and sales professionals to gain good understanding of customers’ needs, 
preferences, and purchase behavior so that customers receive the most relevant marketing message and 
promotion and companies obtain increased revenue and/or profit. To serve this goal, one can generally 
conduct market basket analysis or product affinity segmentation (Collica, 2011). A typical example of 
market basket analysis is to analyze customer transactions at point-of-sale (POS) to discover association 
rules, i.e., which products go together in a customer’s shopping cart. With the association rules, 
companies can arrange their items on the supermarket shelves so that products purchased together will 
be seen together by customers. On the other hand, product affinity segmentation is to cluster customers 
into similar groups that share common purchase patterns. With the product affinity segments, marketers 
and sales professionals can provide customized offers and promotions to members in each segment. 
Both market basket analysis and product affinity segmentation can be employed to identify cross-selling 
and up-selling opportunities and to promote appealing packages of products and services.  

Between the market basket analysis and product affinity segmentation, the latter “provides the most 
powerful and profitable information for marketing campaigns and communication with customers (Baer & 
Chakraborty, 2013)”, which is our focus in this paper. Although product affinity is conceptually attractive 
and can effectively aid in campaign and promotion success, it is quite difficult to perform in practice. The 
challenges lie in two aspects. i) Transactional data used for product affinity segmentation whether 
measured in quantities of products or revenue usually have very high skewness and kurtosis. This is 
because it is often the case that a few customers buy a lot and the majority buys very little. ii) Many 
transactional variables (product quantities) have a significant percentage of zero values due to the fact 
that moderate-sized and/or large-sized companies generally have a variety of products and customers 
usually only buy a selected number of what’s appealing to them. Due to these difficulties of transactional 
data, readily available clustering algorithms often result in disproportionately sized segments such as a 
single overly dominating segment along with many tiny segments. In this paper, we extend the research 
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work in (Baer, 2012; Baer & Chakraborty, 2013) by systematically evaluating the performance of 
Doughnut clustering method on simulated data.  

WHY ARE WE EVALUATING THE DOUGHNUT CLUSTERING METHOD? 

The Doughnut clustering method, first presented in (Baer, 2012), was designed for product affinity 
segmentation on product level data with high skewness, high kurtosis, and large percentage of zero 
values. In such a case, using standard K-means clustering method, one often ends up with a number of 
clusters in the center of the dimensional space because there is a higher density of observations toward 
the center. The core idea behind the Doughnut clustering method is to enforce a single cluster at the 
center of the dimensional space and all other clusters to be appropriately positioned in other areas. This 
is to make sure that each cluster has a sufficient proportion of the overall population and the differences 
among the clusters are significant and meaningful. Although the Doughnut clustering method has been 
used in a wide variety of industries, and an application example was demonstrated in (Baer & 
Chakraborty, 2013) from soup to nuts, little has been done to evaluate the Doughnut clustering method 
from an academic point of view. There is a clear need for such evaluation for two reasons. First, although 
the Doughnut clustering method has been shown to yield satisfactory clustering results in some 
applications, the effectiveness of this method alone is unclear because there are some other ad-hoc 
techniques (i.e., Softmax transformation) applied at the same time to aid in clustering based on problem 
specific characteristics such as high skewness of the data. Second, we know the Doughnut clustering 
method is not a panacea for product affinity segmentation by itself. And, quantitative guidelines on when 
to use the Doughnut clustering method are not known. As an initial step in evaluating the Doughnut 
clustering method in academic settings, we hope to shed lights on its effectiveness and develop clear 
guidelines to marketers and other analytics professionals.   

SIMULATED DATA GENERATION METHODOLOGY  

In this section, we describe a five-step approach to generate simulated data with given kurtosis, 
skewness, and percentage of zero values. The approach is partially based on Fleishman’s cubic 
transformation method (Fleishman, 1978) to generate non-normal distribution with given skewness and 
kurtosis. To make this paper self-contained, we briefly recap Fleishman’s method first.  

In the literature, a variety of methods has been developed to generate non-normally distributed variables 
with prescribed degrees of skewness and kurtosis. The interested reader is referred to (Reinartz, 
Echambadi, & Chin, 2002) for detailed information. All the methods follow some general criteria: a) the 
input has parameters characterizing the distribution; b) one can change the distribution by changing the 
input parameters with minimum difficulty; c) the input should be able to characterize different distribution 
with various deviations from normality; d) the data generation process can be operated efficiently. Based 
on these criteria, Fleishman’s method uses a polynomial transformation (thus also noted as power 
method) of the following form: 

 Y = a + bX + cX2 + dX3 (1) 

where 𝑋 is normally distributed with zero mean and unit variance, i.e. 𝑁(0,1). The constants 𝑎, 𝑏, 𝑐, and 𝑑 
may be chosen such that 𝑌 has a distribution with specified moments of the first four moments, i.e., mean 
(𝐸[𝑌]), variance (𝐸[𝑌2]), skewness (𝐸[𝑌3]), and kurtosis (𝐸[𝑌4]). For the sake of convenience, let 𝐸[𝑌] =
0 and 𝐸[𝑌2] = 1. Since 𝐸[𝑌] = 𝑎 + 𝑐, it follows 𝑎 = −𝑐. We further have the following Fleishman’s 
equations.  

 𝐸[𝑌2] = 𝑏2 + 6𝑏𝑑 + 2𝑐2 + 15𝑑2 (2) 

 𝐸[𝑌3] = 2𝑐(𝑏2 + 24𝑏𝑑 + 105𝑑2 + 2) (3) 

 𝐸[𝑌4] = 24(𝑏𝑑 + 𝑐2[1 + 𝑏2 + 28𝑏𝑑] + 𝑑2[12 + 48𝑏𝑑 + 141𝑐2 + 225𝑑2]) (4) 

Therefore, in order to generate non-normally distributed variable 𝑌 with given skewness (𝐸[𝑌3]) and 
kurtosis (𝐸[𝑌4]), one just needs to solve the Fleishman’s equation system of Eq. (2)-(4). It is worth noting 
that the Fleishman method will not work for all combinations of skewness and kurtosis; the equation 
system may not have a real number solution. The function that implements Fleishman’s method is now 
available in SAS/IML. The interested reader is referred to (Wicklin, 2013) for implementation details. 
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Since we also want to control the percentage of zero values in addition to skewness and kurtosis of the 
simulated data, a five-step approach based on Fleishman’s method is developed as shown in Table 1. 

Input: sample size 𝑵, skewness 𝑬[𝒀𝟑], kurtosis 𝑬[𝒀𝟒], percentage of zero values 𝜶, mean 
(optional), standard deviation (optional) 

1. Use the Fleishman equations to get the values of 𝒂, 𝒃, 𝒄 and 𝒅 for a desired feasible 
combination of skewness and kurtosis. 

2. Generate 𝑵 data points from normally distributed variables 𝑿 with mean 𝑬[𝑿] = 𝟎 and standard 
deviation 𝝈 = 𝟏.  

3. Transform the data in step 2 with the Fleishman coefficients obtained in step 1 to those with 
given skewness and kurtosis following Eq. (1). 

4. (Optional) Transform the data from step 3 to the desired mean and standard deviation, if any. 
New data = desired mean + (data from step 3)* desired standard deviation. 

5. This step assigns a user-specified percentage, denoted by 𝜶 ∈ (𝟎, 𝟏), of randomly selected data 
points to be zero. Give the data from step 4,  

For data point 𝟏, … , 𝑵, repeat  

 Sample a data point from a variable uniformly distributed variable between 0 and 1.  

 If the data value is less than the user-specified percentage 𝜶, let the data point from step 4 
to be zero; otherwise keep the data point from step 4 unchanged. 

End-repeat 

Table 1: The Five-Step Data Generation Approach 

The generated data from Step 3 will have the desired skewness and kurtosis. Moreover, output from step 
4 will have the desired mean, standard deviation, skewness, and kurtosis if the optional step 4 is 
executed. Additionally, mean, standard deviation, skewness, and kurtosis will change after step 5. The 
magnitude of the changes depends on the percentages prescribed by the specific user, i.e. input 
parameter 𝛼. Larger 𝛼 tends to result in bigger jumps in mean, standard deviation, skewness and 
kurtosis. 

Note that Fleishman’s method assumes non-correlated variables. A more recent study by Vale and 
Maurelli (Vale & Maurelli, 1983) extended Fleishman’s method to generate multivariate data with a 
prescribed correlation. The implemented function of this Vale-Maurelli method is also available in 
SAS/IML (Wicklin, 2013). As our five-step approach is based on Fleishman’s method, we are implicitly 
assuming the variables are non-correlated. However, if we replace step 1 with the Vale-Maurelli method, 
we will be able to generate correlated multivariate non-normal data. In that case, the degree of correlation 
will also be affected by step 5 in a way similar to skewness and kurtosis. As an initial study focused the 
Doughnut clustering method for product affinity segmentation on simulated data, we do not consider 
correlations between transaction variables in this paper. However, the unique interaction between 
percentages of zero values and skewness/kurtosis/correlation can be an interesting direction for future 
research. 

IMPLEMENTATION OF THE DATA GENERATION METHODOLOGY 

We introduce the key points of our implementation of the five-step approach in this subsection. For step 
1, we employed the “Solve” function in Mathematica® to solve the Fleishman’s equations for a given 
feasible combination of skewness and kurtosis. For instance, given skewness = 1.5 and kurtosis = 25, by 
solving the corresponding Fleishman’s nonlinear equation system we have 𝑎 = -0.201827, 𝑏 = 1.50632, 𝑐 
= 0.201827, 𝑑 = -0.328259. 

In accordance to the real data employed in (Baer & Chakraborty, 2013), we create simulated transaction 
data with eight product classes and 30,000 entries. For each product class (i.e. A, B, C, D, E, F, G, and 
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H), the number of units purchased is recorded. Under this setting, we implemented step 2 using the 
function “rand” as follows. 

Data work.SimulatedData; 

 do ID=1 to &numRecords; 

  *generate random product quantity; 

  Prod_Quant_A=rand("normal", 0, 1); 

  Prod_Quant_B=rand("normal", 0, 1); 

  Prod_Quant_C=rand("normal", 0, 1); 

  Prod_Quant_D=rand("normal", 0, 1); 

  Prod_Quant_E=rand("normal", 0, 1); 

  Prod_Quant_F=rand("normal", 0, 1); 

  Prod_Quant_G=rand("normal", 0, 1); 

  Prod_Quant_H=rand("normal", 0, 1); 

  output; 

 end; 

run; 

 

Step 3 is to convert the generated the data from step 2 into non-normal data with the coefficients obtained 
in step1. We show the implementation below.  

Data work.SimulatedData; 

set work.SimulatedData; 

    Prod_Quant_A_=&a + &b*Prod_Quant_A + &c*Prod_Quant_A**2 + &d*Prod_Quant_A**3; 

    Prod_Quant_B_=&a + &b*Prod_Quant_B + &c*Prod_Quant_B**2 + &d*Prod_Quant_B**3; 

    Prod_Quant_C_=&a + &b*Prod_Quant_C + &c*Prod_Quant_C**2 + &d*Prod_Quant_C**3; 

    Prod_Quant_D_=&a + &b*Prod_Quant_D + &c*Prod_Quant_D**2 + &d*Prod_Quant_D**3; 

    Prod_Quant_E_=&a + &b*Prod_Quant_E + &c*Prod_Quant_E**2 + &d*Prod_Quant_E**3; 

    Prod_Quant_F_=&a + &b*Prod_Quant_F + &c*Prod_Quant_F**2 + &d*Prod_Quant_F**3; 

    Prod_Quant_G_=&a + &b*Prod_Quant_G + &c*Prod_Quant_G**2 + &d*Prod_Quant_G**3; 

    Prod_Quant_H_=&a + &b*Prod_Quant_H + &c*Prod_Quant_H**2 + &d*Prod_Quant_H**3; 

run; 

 

The last step is to assign a prescribed percentage of zero values (i.e. input parameter 𝛼) as follows. The 
value of 𝛼 is stored in the MACRO variable “pct”. We assume each product class variable has the same 
percentage of zero values.  

Data work.SimulatedData; 

set work.SimulatedData; 

    i1=rand("UNIFORM"); if i1<=&pct then Prod_Quant_A=0; 

    i2=rand("UNIFORM"); if i2<=&pct then Prod_Quant_B=0; 

    i3=rand("UNIFORM"); if i3<=&pct then Prod_Quant_C=0; 

    i4=rand("UNIFORM"); if i4<=&pct then Prod_Quant_D=0; 

    i5=rand("UNIFORM"); if i5<=&pct then Prod_Quant_E=0; 

    i6=rand("UNIFORM"); if i6<=&pct then Prod_Quant_F=0; 

    i7=rand("UNIFORM"); if i7<=&pct then Prod_Quant_G=0; 

    i8=rand("UNIFORM"); if i8<=&pct then Prod_Quant_H=0; 

run; 

 

Due to length limitation, we omit the description of the Doughnut clustering method implementation in this 
paper. The interested is strongly encouraged to read (Baer & Chakraborty, 2013) for a complete 
description. 

EXPERIMENT DESIGN 

In order to generate a meaningful test bed for the Doughnut clustering method, we arrange the input for 
the five-step data generation approach as follows. We consider two scales of skewness and kurtosis 
respectively; namely skewness=0 or 5.75 and kurtosis =0 or 95.75. As our initial exploration results show 
that the final clustering results are more sensitive to the percentage of zero values, we consider 7 scales 
of percentage values, i.e., 𝛼 = 0.0, 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8. In addition, because skewness= 5.75 and 
kurtosis=0 is not a feasible combination for Fleishman’s equation system, we ended up with 21 
combinations of feasible input parameters for the five-step approach as shown in Table 2. Each ID 
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“XX.0X” in the table should be interpreted as follows. The first letter “X” stands for skewness level, i.e., 
either Low (0) or High (5.75); the second letter “X” stands for kurtosis level, i.e., either Low (0) or High 
(95.75); the last letter “X” stands for the value of parameter 𝛼.   

ID 
Skew
ness 

Kurt
osis 

Pcnt 
of 0s ID 

Skew
ness 

Kurto
sis 

Pcnt 
of 0s ID 

Skewn
ess 

Kurto
sis 

Pcnt 
of 0s 

LL0.0 0 0 0 LH0.0 0 95.75 0 HH0.0 5.75 95.75 0 
LL0.3 0 0 0.3 LH0.3 0 95.75 0.3 HH0.3 5.75 95.75 0.3 
LL0.4 0 0 0.4 LH0.4 0 95.75 0.4 HH0.4 5.75 95.75 0.4 
LL0.5 0 0 0.5 LH0.5 0 95.75 0.5 HH0.5 5.75 95.75 0.5 
LL0.6 0 0 0.6 LH0.6 0 95.75 0.6 HH0.6 5.75 95.75 0.6 
LL0.7 0 0 0.7 LH0.7 0 95.75 0.7 HH0.7 5.75 95.75 0.7 
LL0.8 0 0 0.8 LH0.8 0 95.75 0.8 HH0.8 5.75 95.75 0.8 

Table 2: Input Parameters for the Five-Step Data Generation Approach 

We note that the corresponding skewness and kurtosis of the final simulated data is not the same as 
input skewness and kurtosis values except for the case 𝛼 = 0. This is due to step 5 in the five-step 
approach as explained earlier.  For instance, the final degrees of skewness and kurtosis of simulated data 
IDs HH0.3 and HH0.8 are as shown in Table 3 and Table 4.  

Variable Skewness Kurtosis Pcnt of 0s 

Prod_Quant_A 7.16 135.33 30.23% 

Prod_Quant_B 7.48 143.89 30.51% 

Prod_Quant_C 7.05 132.86 30.89% 

Prod_Quant_D 7.99 156.26 30.84% 

Prod_Quant_E 7.09 134.34 30.54% 

Prod_Quant_F 7.12 113.95 30.88% 

Prod_Quant_G 5.76 116.32 31.01% 

Prod_Quant_H 8.18 141.42 30.71% 

Table 3: The Final Skewness and Kurtosis Values for Experiment ID HH0.3 

 

Variable Skewness Kurtosis Pcnt of 0s 

Prod_Quant_A 10.87 284.29 80.78% 

Prod_Quant_B 12.26 304.16 80.24% 

Prod_Quant_C 14.93 437.09 80.32% 

Prod_Quant_D 15.51 525.22 80.36% 

Prod_Quant_E 13.77 396.59 80.02% 

Prod_Quant_F 8.65 258.14 80.23% 

Prod_Quant_G 12.97 475.97 79.77% 

Prod_Quant_H 10.75 266.24 80.22% 

Table 4: The Final Skewness and Kurtosis Values for Experiment ID HH0.8 

RESULTS  

With experiments set up as described in the previous section, we run both the Doughnut clustering 
method and the traditional K-means method. Because standardization and a cap of 3 standard deviations 
are commonly used in practice for product affinity segmentation, we apply these two data manipulation 
techniques on the simulated data before feeding them to both K-means and the Doughnut clustering 
method.  

When it comes to evaluating clustering results, one generally has to employ appropriate criteria and 
techniques. Such evaluation process is called cluster validity and the criteria or techniques are named 
clustering validity metrics. Moreover, clustering validity is formally defined as “procedures that evaluate 
the results of clustering analysis in a quantitative and objective fashion” (Jain & Dubes, 1988). Meanwhile, 
clustering validity metrics measure the merit of clustering results in a quantitative manner.  Commonly 
used clustering validity metrics generally fall under three categories (Halkidi, Batistakis, & Vazirgiannis, 
2001): i) external criteria where we evaluate the results based on pre-specified structure imposed on a 
data set; ii) internal criteria where we evaluate the results in terms of quantities that invoke the vectors of 
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the data themselves, e.g., proximity matrix; and iii) relative criteria where the evaluation is conducted by 
comparing the structure against other clustering schemes. Some of the commonly used metrics include 
homogeneity and separation, Silhouette Coefficient (Rousseeuw, 1987), cluster sizes and consistency, 
and many others. 

In this paper we employ cluster size and the ratio of between-cluster variance to within-cluster variance 
as validity metrics. Cluster size, classified as external criteria, is used to check if the size distribution 
across segments is reasonable for downstream marketing strategy application from a managerial level. 
An overly dominating cluster with many tiny clusters is clearly not preferable. The internal criteria, ratio of 
between-cluster variance to within-cluster variance, provided as part of the statistics output of PROC 
FASTLCUS denoted by RSQ_ratios, measures the ratio of difference between groups divided by 
homogeneity within groups. Therefore, the larger the RSQ_ratio is, the better the clustering results are.  

We report the cluster sizes in terms of percentages (cluster frequency divided by overall frequency 
multiplied by 100) for generated data in Table 5, Table 6, and Table 7. Correspondingly, the RSQ_ratio 
values are reported in Figure 1, Figure 2, and Figure 3.  

𝜶 0 0.3 0.4 0.5 0.6 0.7 0.8 

Cluster K D K D K D K D K D K D K D 

1 11.2 1.6 10.0 4.2 10.1 5.5 9.7 8.7 7.2 11.1 7.0 17.9 4.6 29.2 

2 10.9 12.2 9.9 11.2 9.0 11.3 8.4 9.3 8.4 9.5 5.9 10.1 5.3 7.9 

3 11.0 12.4 10.5 12.6 22.9 11.2 8.9 10.1 37.8 10.6 6.3 7.8 5.4 9.3 

4 11.1 12.3 10.4 12.8 9.9 11.8 9.2 10.9 8.3 9.9 9.3 12.1 7.4 8.4 

5 11.5 12.6 10.2 12.0 9.9 11.5 8.4 12.5 8.3 11.9 7.0 8.4 5.2 16.4 

6 11.1 12.1 10.7 12.8 9.3 12.4 29.7 10.9 8.2 12.6 6.2 10.4 5.6 7.2 

7 11.1 12.3 10.2 12.2 9.9 13.3 9.3 11.7 7.3 12.3 41.6 10.7 49.8 6.5 

8 11.4 12.4 10.5 11.8 9.9 11.9 8.0 13.4 7.4 11.5 9.9 8.5 7.9 9.0 

9 10.8 12.2 17.7 10.5 8.9 11.1 8.3 12.6 7.2 10.7 6.8 14.0 8.9 6.1 

K: K-means      D: Doughnut cluster method 

Table 5: Resulted Cluster Sizes in Terms of Percentages from K-means and Doughnut Clustering Method on 
Simulated Data with Skewness =0 and Kurtosis = 0 

 

𝜶 0 0.3 0.4 0.5 0.6 0.7 0.8 

Cluster K D K D K D K D K D K D K D 

1 1.6 1.3 1.3 4.6 1.2 5.9 10.1 7.1 0.8 11.1 6.2 17.3 4.8 26.8 

2 11.4 12.3 14.2 11.4 1.3 10.5 11.6 12.0 10.0 11.7 8.4 11.2 5.9 7.2 

3 13.2 12.5 17.8 11.1 15.7 12.3 11.9 9.5 8.1 11.6 7.9 10.9 6.4 3.4 

4 15.5 12.6 14.6 10.8 1.2 12.0 10.3 12.8 27.8 13.0 10.3 10.0 5.9 22.4 

5 14.4 12.6 15.9 12.3 23.0 12.3 11.9 12.2 13.0 8.8 8.0 9.2 45.4 8.0 

6 1.8 12.5 16.3 13.4 16.2 11.1 11.3 13.4 9.0 10.0 7.3 10.4 10.0 11.0 

7 13.1 12.1 16.8 11.8 14.5 12.7 1.1 9.8 8.8 12.1 36.3 9.6 8.1 7.5 

8 14.2 11.9 1.5 12.4 15.3 11.0 9.5 10.8 12.7 11.4 6.9 11.6 5.9 7.8 

9 14.8 12.3 1.5 12.2 11.5 12.3 22.4 12.3 9.7 10.2 8.7 9.6 7.5 5.9 

K: K-means      D: Doughnut cluster method 

Table 6 Resulted Cluster Sizes in Terms of Percentages from K-means and Doughnut Clustering Method on 
Simulated Data with Skewness =0 and Kurtosis =95.75 
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𝜶 0 0.3 0.4 0.5 0.6 0.7 0.8 

Cluster K D K D K D K D K D K D K D 

1 29.0 6.4 2.7 7.5 2.5 10.8 2.3 11.1 1.8 15.3 6.7 22.2 4.8 26.5 

2 3.5 8.7 37.0 11.6 2.6 13.6 72.0 12.8 1.9 8.5 6.8 8.7 1.0 6.5 

3 3.4 12.5 2.9 12.0 2.5 9.8 2.2 13.2 2.0 11.5 6.6 8.3 61.7 6.7 

4 3.6 10.8 38.9 11.7 40.0 11.8 2.3 7.3 10.8 10.8 1.4 9.7 4.9 9.9 

5 24.0 13.0 7.5 11.9 38.0 12.5 12.1 10.1 68.8 8.5 5.9 8.2 4.9 24.4 

6 3.3 13.0 2.8 11.5 2.4 13.2 2.4 13.6 9.1 9.2 6.7 10.2 8.5 6.9 

7 19.0 10.7 2.8 10.7 2.6 13.2 2.2 11.3 1.8 14.1 6.3 15.3 4.9 7.0 

8 3.2 13.0 2.8 11.3 6.9 15.1 2.2 9.2 1.8 11.6 53.0 10.0 4.4 5.7 

9 11.0 12.0 2.7 11.8 2.5 0.0 2.3 11.6 2.0 10.6 6.6 7.4 5.0 6.3 

K: K-means      D: Doughnut cluster method 

Table 7: Resulted Cluster Sizes in Terms of Percentages from K-means and Doughnut Clustering Method on 
Simulated with Skewness =5.75 and Kurtosis = 95.75 

HOW EVENLY DISTRIBUTED ARE CLUSTER SIZES? 

As shown in Table 5, Table 6, and Table 7, the Doughnut clustering method brings more evenly 
distributed segments compared to the traditional K-means method when simulated data have larger 
skewness, kurtosis, and percentage of zero values. For example, as shown in Table 7, when the 
percentage of zero values α = 0.8, we can see that, while K-means results in one cluster with 61.7% of 
the total data points and eight tiny segments, Doughnut method yields two moderate size clusters (26.5% 
and 24.4% respectively) and seven relatively smaller segments.  

Since it is critical in business practice to have evenly distributed cluster sizes, a metric to quantify such a 
quality becomes desirable. In this paper we use the p-value for Chi-square test to achieve this goal. We 
assume an evenly distributed 9-cluster solution attains a size distribution of 12%, 11%, 11%, 11%, 11%, 
11%, 11%, 11%, and 11%. For each of the 21 simulated data, we next compare the size distribution of 
results from both the Doughnut clustering method and K-means against this “standard even distribution” 
using Chi-square test. Thus, the lower the p-value for Chi-square test is, the less likely the corresponding 
solution is similarly (evenly) distributed. Specifically, a perfect agreement would result in a p-value of 1. 
We report p-values on all 21 simulated data in Table 8 below. 

Input Skewness=0, Kurtosis=0 

Pnct of zero values 0 0.3 0.4 0.5 0.6 0.7 0.8 

K-Means 1 0.9831 0.7446 0.2061 0.0114 0.0014 <.0001 

Doughnut 0.3745 0.8251 0.9438 0.9968 0.9999 0.9441 0.1212 

Input Skewness=0, Kurtosis=95.75 

Pnct of zero values 0 0.3 0.4 0.5 0.6 0.7 0.8 

K-Means 0.0284 0.0004 0.0001 0.1322 0.0188 0.0167 0.0001 

Doughnut 0.317 0.8741 0.9626 0.981 0.9997 0.9943 0.0245 

Input Skewness=5.75, Kurtosis=95.75 

Pnct of zero values 0 0.3 0.4 0.5 0.6 0.7 0.8 

K-Means <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 

Doughnut 0.9549 0.9965 0.1266 0.9914 0.9908 0.6866 0.0244 

Table 8: The p-Values of Chi-square Tests for Cluster Size Distributions on Different Simulated Data 

It is clear from Table 8 that the p-values of results from Doughnut clustering method is larger in almost all 
the cases except for two special cases where Skewness=0, Kurtosis=0, and percentage of zero values =0 
or 0.3. In other words, results from the Doughnut clustering method is more evenly distributed than those 
from K-means method on most of our tested data. This exciting observation signifies the benefits of the 
Doughnut clustering method in business applications.   

WHAT IS RATIO OF BETWEEN-CLUSTER VARIANCE TO WITHIN-CLUSTER VARIANCE? 

By comparing RSQ_ratio values in Figure 1, Figure 2, and Figure 3, we can see that the Doughnut 
clustering method is obviously performing better than K-means when data come with small skewness and 
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high kurtosis regardless of the values of percentages of zeros in the data. On the other hand, when 
simulated data has skewness of 5.75 and kurtosis of 95.75, the Doughnut clustering method is only better 
when the percentage of zeros is high, i.e. α = 0.8. In other tested cases, the advantages of Doughnut 
clustering method over the traditional K-means method are not pronounced.  

 

Figure 1: Comparison of RSQ_ratio Values of K-means and Doughnut for Different Level of Percentages of 
Zero Values While Fixing Skewness =0 and Kurtosis =0 

 

 

Figure 2: Comparison of RSQ_ratio Values of K-means and Doughnut for Different Level of Percentages of 
Zero Values While Fixing Skewness =0 and Kurtosis =95.75 

 

 

Figure 3: Comparison of RSQ_ratio Values of K-means and Doughnut for Different Level of Percentages of 
Zero Values While Fixing Skewness =5.75 and Kurtosis =95.75 
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CLUSTER DIFFERENTIATION BASED ON DOUGHNUT CLUSTERING METHOD  

In order to examine cluster differentiation to better understand customer purchase behavior in different 
groups, we calculate the average number of each product purchased within each cluster.  Experiments 
were conducted separately on clusters generated by both K-means and the Doughnut clustering method 
for all the 21 simulated data. As an example, we present the results for the simulated data with input 
skewness= 5.75, kurtosis= 95.75, and percent of zero values= 0.8. The means of different variables 
within clusters generated by K-means are reported in Table 9 and Figure 4. Table 10 and Figure 5 
present the means of different variables within clusters generated by the Doughnut clustering method. 
Since the clustering was done to keep customers with similar purchase patterns together, distinct patterns 
can be observed from the means presented.  

As shown in Table 9, Table 10, Figure 4, and Figure 5, both the K-means and the Doughnut clustering 
methods result in clusters that have high means for only one product. This is to be expected and the 
results can be satisfactorily used for product marketing.  As a point of clarification, the reader will note 
that many of the mean values are less than zero.  This seems strange from a customer purchase 
perspective as no customer would purchase less than zero.  However, as an academic exercise in 
applying the Fleishman’s method, we obtained many values that were less than zero. Had we 
transformed all the negative values to zero, we would have changed the desired Skewness, Kurtosis, and 
percent of zero values. Thus, in this paper we keep the negative data points in order to gain more 
accurate control over the three parameters.  

While the product affinity is important and having high means for only one product is good, the size of the 
cluster cannot be overlooked.  Therefore, it is important that the clusters be as evenly sized as possible. 
The size of the cluster is the clear differentiator between the K-means and the Doughnut methods.  

Variable Mean Within Each Cluster 

Cluster Freq Pcnt All A B C D E F G H 

All 30000 100.0% 5.9 0.8 0.7 0.8 0.9 0.8 0.7 0.6 0.8 

1 1431 4.8% 16.0 -0.9 -0.9 -1.4 -1.0 -1.1 24.8 -1.6 -1.8 

2 304 1.0% 137.5 -0.5 0.4 2.5 0.7 -0.5 134.6 0.7 -0.2 

3 18522 61.7% -17.0 -2.1 -2.1 -2.0 -2.0 -2.1 -2.3 -2.2 -2.1 

4 1465 4.9% 45.3 -0.6 -1.2 -1.6 -0.7 51.6 -1.0 -0.7 -0.6 

5 1461 4.9% 45.6 -0.1 50.8 -1.1 -0.6 -1.0 -1.1 -0.7 -0.8 

6 2552 8.5% 42.7 26.4 -1.8 -1.5 -1.3 -1.7 -1.6 25.7 -1.4 

7 1456 4.9% 42.2 -1.1 -1.2 50.6 -1.2 -1.1 -1.6 -0.8 -1.3 

8 1310 4.4% 47.2 -1.0 -1.7 -1.0 56.0 -1.4 -1.2 -1.1 -1.4 

9 1499 5.0% 41.7 -0.4 -1.6 -1.1 -1.1 -1.1 -1.7 -0.8 49.5 

Table 9: Results from K-means Method for Simulated Data with Skewness =5.75, Kurtosis =95.75, and 
Percentage of zero values = 0.8 

 

 

Figure 4: Results from K-means Method for Simulated Data with Skewness =5.75, Kurtosis =95.75 and 
Percentage of zero values = 0.8 
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Variable Mean Within Each Cluster 

Cluster Freq Pcnt All A B C D E F G H 

All 30000 100.0% 5.9 0.8 0.7 0.8 0.9 0.8 0.7 0.6 0.8 

1 7959 26.5% -3.0 -0.1 0.0 -0.1 -0.2 -1.9 -0.2 -0.1 -0.3 

2 1961 6.5% 35.5 38.7 1.0 -0.1 -1.6 -0.4 -0.6 1.0 -2.6 

3 2019 6.7% 35.6 0.4 0.7 0.5 -2.2 -2.1 -0.8 1.1 38.1 

4 2972 9.9% -6.8 -2.7 -12.6 19.4 -2.1 -2.3 -2.3 -2.4 -1.9 

5 7331 24.4% -24.6 -4.5 6.7 -4.6 -4.8 -2.9 -4.9 -5.0 -4.6 

6 2058 6.9% 35.4 -1.6 0.0 -0.6 -2.0 39.0 0.2 -0.1 0.5 

7 2102 7.0% 42.9 -0.1 0.9 0.1 41.9 -0.2 0.1 0.0 0.2 

8 1723 5.7% 24.9 -2.1 0.8 0.1 -2.4 -2.3 -1.8 35.0 -2.5 

9 1875 6.3% 29.6 -2.1 1.1 0.7 -2.0 -2.0 37.1 -0.7 -2.6 

Table 10: Results from the Doughnut Clustering Method for Simulated Data with Skewness =5.75, Kurtosis 
=95.75, and Percentage of zero values = 0.8 

 

 

Figure 5: Results from the Doughnut Clustering Method for Simulated Data with Skewness =5.75, Kurtosis 
=95.75, and Percentage of zero values = 0.8 

CONCLUSION 

In this paper, we evaluated the performance of the Doughnut clustering method for product affinity 
problem by conducting a comprehensive numerical study on simulated data with different levels of 
skewness, kurtosis, and percentages of zero values. Our results show that the Doughnut method works 
better than the traditional K-means method on simulated data with large kurtosis and large percentage of 
zero values. This observation emphasizes the advantages of the Doughnut clustering method over 
tradition K-means method because reducing skewness by transformation methods (e.g. Softmax 
transformation) is practically more achievable than reducing kurtosis or percentages of zero values. 
Therefore, when high kurtosis, a larger percentage of zero values, and skewed data are present in 
transaction data, applying both a Softmax transformation as well as the Doughnut clustering method is 
more advisable.  

In our current data generation procedure, we only assume non-correlated data. How effective the 
Doughnut clustering method works on correlated transaction data is still an open question. As a result, 
taking into account correlation between different product variables serves as an interesting future study 
direction. In addition, the ratio of between-cluster variance to within-cluster variance is often used as 
validity metric for hierarchical clustering algorithms in the literature. Since the Doughnut clustering method 
is based on the non-hierarchical algorithm K-means, it may also be interesting to explore other validity 
metrics in addition to RSQ_ratio in our future research.  
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