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ABSTRACT  

This paper presents an application based on predictive analytics and feature-extraction techniques 
to develop the alternative method for diagnosis of obstructive sleep apnea (OSA). Our method reduces the 
time and cost associated with the gold standard or polysomnography (PSG), which is operated manually, 
by automatically determining the OSA’s severity of a patient via classification models using the time-series 
from a one-lead electrocardiogram (ECG). The data is from Dr. Thomas Penzel of Philipps-University, 
Germany, and can be downloaded at www.physionet.org. The selected data consists of 10 recordings (7 
OSAs, and 3 controls) of ECG collected overnight, and non-overlapping-minute-by-minute OSA episode 
annotations (apnea and non-apnea states). This accounts for a total of 4,998 events (2,532 non-apnea and 
2,466 apnea minutes). This paper highlights the nonlinear decomposition technique, wavelet analysis (WA) 
in SAS/IML® software, to maximize the information of OSA symptoms from ECG, resulting in useful 
predictor signals. Then, the spectral and cross-spectral analyses via PROC SPECTRA are used to quantify 
important patterns of those signals to numbers (features), namely power spectral density (PSD), cross 
power spectral density (CPSD), and coherency, such that the machine learning techniques in SAS® 
Enterprise Miner™, can differentiate OSA states. To eliminate variations such as body build, age, gender, 
and health condition, we normalize each feature by the feature of its original signal (that is, ratio of PSD of 
ECGs WA by PSD of ECG). Moreover, because different OSA symptoms occur at different times, we 
account for this by taking features from adjacency minutes into analysis, and select only important ones 
using a decision tree model. The best classification result in the validation data (70:30) obtained from the 
Random Forest model is 96.83% accuracy, 96.39% sensitivity, and 97.26% specificity. The results suggest 
our method is well comparable to the gold standard. 

INTRODUCTION  

Sleep is a crucial part of life. The human body becomes fatigued during the day because of 
numerous activities and rejuvenates itself during the night while sleeping, creating a daily life cycle of 
degradation and renewal. Good sleep fosters a good working state for the body. Conversely, a disturbed 
sleep will not restore the body to its normal working state. Sleep disorders prevent the body from 
rejuvenating. One form of sleep disorders is sleep apnea, a common disorder marked by frequent pauses 
in breathing or shallow breaths during sleep. The most prevalent form of apnea, called obstructive sleep 
apnea (OSA), is due to a partly or completely obstructed airway. Clinically, OSA is identified as a major risk 
factor for hypertension, arrhythmias, stroke, myocardial infarction, congestive heart failure, and death [1-
6]. Approximately 1 in 15 adults, or about 18 million Americans, have moderate or severe OSA [7] and more 
than half of them remain undiagnosed. An estimated 50 to 70 million Americans suffer from chronic sleep 
apnea [8], and hundreds of billions of dollars are spent each year in direct medical costs for screening and 
treatment [9].    

OSA has subtle observable symptoms during the day and, more importantly, it is almost impossible 
for the person with OSA to realize that he or she has the disease because it occurs when the person is 
asleep. A vast majority of OSA patients seek treatment and/or receive the diagnosis after their condition 
becomes moderate or severe. Unlike standard diagnosis of chronic diseases such as hypertension or 
diabetes, in which a test is performed routinely during an annual physical exam, a sleep apnea diagnosis 
is made only after a patient expresses sleep discomfort or upon a doctor’s recommendation. The gold 
standard for OSA screening and diagnosis involves administering polysomnography (PSG) or a sleep 
study. PSG involves the patient spending the entire night in a sleep clinic with many sensors attached to 
several parts of the body for recording several biological signals. To complete the study, sleep apnea 
episodes (i.e., impeded or difficult breathing events) are marked manually by a sleep specialist or a sleep 
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doctor by looking for specific patterns in the multiple bio-signal time-series collected overnight. The purpose 
of a PSG is to determine the severity of the sleep apnea condition called apnea-hypopnea index (AHI) by 
noting how often a subject stops breathing (apnea) on average in each hour of sleep. Sleep clinics are 
known to collectively perform 1.17 million screening tests per year in the U.S. [9], a very low number 
compared to the number of individuals with OSA, estimated at 70 million. The waiting time for diagnosis 
and screening of suspected patients ranges from 2 to 10 months [9]. Baseline estimates of 5-year diagnosis 
and treatment charges for a patient with OSA are about $4,210 [10]. The OSA diagnosis process mentioned 
above has two key problems. 1) Because of the limited equipment and number of facilities for PSG, a 
relatively small percentage of the OSA population can be tested. 2) Each apnea episode must be manually 
and individually marked by a sleep technician or sleep doctor, a laborious task that requires a significant 
amount of time to complete. There is a clear need to expedite the diagnosis process to reduce the overall 
medical costs and the adverse impact on an individual’s health. Currently, with the advancement of the 
microelectromechanical systems (MEMs), one-lead ECG signal acquisition can be done at home with a 
small wearable device. From previous studies [11-14], it is clear that the information about cardiorespiratory 
system is embedded in an ECG signal. 

In this paper, we present the method to diagnose an OSA existence and determine its severity from 
only one-lead ECG signal collected overnight using advance feature extraction and data mining techniques. 
The organization of this paper is as follows. First, we give a brief background of a wavelet analysis and 
demonstrate the technique and codes in SAS/IML®. Then, the spectral and cross-spectral analyses via 
PROC SPECTRA to extract information (features) related to OSA symptoms are explained. We also give 
a detail about our data used in this analysis and how to preprocess them. Next, the techniques for 
developing the classification model from the extracted features are depicted. Finally, the results and 
conclusion are given in the last sections.   

WAVELET TRANSFORMATION: BACKGROUND 

Wavelet decomposition is a modified short-time Fourier transform that represents the decomposed 
signals in both time and frequency domain through time windowing function or mother wavelet function [15]. 
Traditionally, the Fourier transform is normally used for analyzing the signal in frequency domain. However, 
in nonlinear time-series that contains short duration transients, Fourier transform failed to capture that 
behavior. When transformed the short transient in time domain to frequency domain, it corresponds to a 
damped and long-duration vibration [16]. This time-frequency localization advantage is a well-known 
characteristic of a wavelet transformation. In contrast to Fourier transform, which assumes the signal to be 
stationary, the wavelet analysis does not have such limitation so that it works well with the nonstationary 
time-series.  

The wavelet transformation process comprises of two main phases, analysis or decomposition and 
synthesis or reconstruction phases. If the certain condition is met, the signal can be perfectly reconstructed 
using the coefficients obtained from the analysis or decomposition phase. With these reasons, the wavelet 
decomposition is popular in a signal denoising application. The user can selectively delete the decomposed 
coefficients corresponding to the noises and reconstruct the denoised signal back.  

 

Figure 1. Discrete wavelet transform (DWT) using multiresolution analysis (MRA) with 3 level filter banks 

 There are several mathematical methods that could be used to achieve a wavelet decomposition. 
The one that seems to be intuitively easy to understand is a multiresolution analysis (MRA) developed by 
Mallat in 1989 [17]. In general discrete wavelet transformation (DWT), the signal is passed through a series 
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of high-pass filters (mathematical tool that allows only fast changing value data to pass, otherwise zero) 
and low-pass filters (passing slow changing value data, otherwise zero) as shown in Figure 1. 

The DWT procedure starts from feeding the time-series 𝑥[𝑛] to the half band low-pass filter with an 
impulse response 𝑔[𝑛] and half band high-pass filter with an impulse response h[n]. In mathematical 
expression, the filtering process is the convolution of the signal with the impulse response of the filter: 

 𝑥[𝑛] ∗ ℎ[𝑛] = ∑ 𝑥[𝑘] ∙ ℎ[𝑛 − 𝑘]

∞

𝑘=−∞

 (1) 

 Regarding to the Nyquist theory, after passing the signal through either a half band low-pass filter 
or a half band high-pass filter, half of the samples could be eliminated. This denotes by the symbol ↓2 in 
the Figure 1. The result of the first high-pass filter is level 1 detail coefficients. Likewise, the result of the 
first low-pass filter is level 1 approximation coefficients. To perform a further analysis, the level 1 
approximation coefficients are used as a signal to be passed through another set of half band low-pass and 
high-pass filters. In theory, the decomposition level could be done for n levels. However, in practice, the 
analysis levels depend on a number of samples of the original signal. It should be noted that because the 
decomposition process involves the downsampling with the factor of two. Thus, the number of samples 
required in the wavelet analysis must be the power of two. 

 In synthesis (reconstruction) phase, to be able to perfectly reconstruct the signal back from the 
wavelet coefficients in every decomposed level, the pair of low-pass and high-pass filters must form 
orthonormal bases. To satisfy that constrain, the relationship between them is [18]: 

 ℎ[𝐿 − 1 − 𝑛] = (−1)𝑛 ∙ 𝑔[𝑛] (2) 

Where ℎ[𝑛] is impulse response of a high-pass filter 

 𝑔[𝑛] is impulse response of a low-pass filter 

 𝐿 is the filter length in number of sample 

When the filter pair that satisfies equation 2 is used, the reconstruction process is exactly the 
reverse process of the analysis process. The coefficients at every level are upsampled with the factor of 
two then passed through the synthesis filter pairs. The relationship between the analysis and synthesis 
filters is that they are identical to each other but time reversal. There are many choices of the low-pass and 
high-pass filter pairs used in wavelet analysis. SAS/IML® [19] provides two choices of wavelet family, the 
Daubechies Extremal phase family, and the Daubechies Least Asymmetric family (Symmlet family). For 
further information, reference [18] provides very good information on theory and application of wavelet 
decomposition.  

WAVELET DECOMPOSITION USING PROC IML 

 The goal of this section is to go through how a wavelet decomposition is processed in SAS/IML®. 
In this paper, we use SAS/IML® version 12.1 user guide [19] as a guideline, specifically Chapter 19 and 23 
for a wavelet analysis. To start, after the time-series data was successfully imported into SAS library. We 
can activate PROC IML using the following command: 

proc iml; 
 

 Unlike others, PROC IML works interactively inside its own shell. Once activated, the commands 
for computation are little different comparing to the normal commands. Now, we will start to do a wavelet 
decomposition using the commands bellow: 

use SASUSER.A15HRV; *indicate the dataset to be used; 
read all var{HRV} into signal; 
optn ={3,.,2,10};*SYMLET10; 

call wavft(decomp,signal,optn); 
call coefficientPlot(decomp, , , , ,"Summary of wavelet decomposition's coefficient"); 
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 The first line in the code above is to indicate which dataset to be used. In this case, dataset 𝐴15𝐻𝑅𝑉 

from a library 𝑆𝐴𝑆𝑈𝑆𝐸𝑅 is assigned. Next, we read all values in variable 𝐻𝑅𝑉 into a variable name 𝑠𝑖𝑔𝑛𝑎𝑙 
in PROC IML shell. Then, the options for our wavelet decomposition is assigned. Briefly, there are 4 options 
needed to be declared before the wavelet decomposition could be executed.  

The first element in vector 𝑜𝑝𝑡𝑛 (opt[1   ]) indicates how the signal boundary is handled. One of the 
wavelet analysis limitations is that the analysis signal must have a number of data points (N) in the 
increment of 2𝑛 where n=1,2,3…. SAS/IML has a built-in function to handle this limitation using several 
options for padding the signal such as padding the signal by zero, the signal reflection, user specified 
number, and so on. In our case, we use a signal reflection because the extension sequence near boundary 
is continuous. A user should experiment with all extension methods for the best result. However, to reduce 
the error introduced in the analysis process, it is suggested that the data should be format to the length of 
2𝑛 so that the extension is not needed. In the next option, (opt[2   ]), the user can indicate the degree of the 
polynomial to be used in the data padding if the first option (opt[1   ]) is set to be 2. Since we use the signal 
reflection, this option will be ignored by PROC IML. For option 3, (opt[3   ]), the user must specify the method 
to be used for a decomposition. Symmlet family, (opt[3   ]=2), was chosen in our case because of its near 
symmetric property which is desirable in the reconstruction phase.  

Finally, the last option, (opt[4   ]), chooses which wavelet family member to be used in the 
decomposition. Generally, the wavelet family member indicates how enlarged or compressed the wavelet 
base function is (the higher number indicates more compressed wavelet base function). The choice for 
choosing this number depends solely on the user’s application. Some experiments may be needed before 
the final wavelet family member is chosen. For the demonstration, we use Symmlet10 in this case (opt[4   
]=10). For more information about the aforementioned options, please consult Chapter 19 and Chapter 23 
in the SAS/IML® user manual [19].  

After required options have been specified, we call a wavelet decomposition (𝑐𝑎𝑙𝑙 𝑤𝑎𝑣𝑓𝑡(…..)) on 

variable 𝑠𝑖𝑔𝑛𝑎𝑙 and its decomposition information will be stored in variable 𝑑𝑒𝑐𝑜𝑚𝑝. To visually inspect the 

decomposition, 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑃𝑙𝑜𝑡 call is used. The result is shown in the Figure 2. We can use the call 
𝑤𝑎𝑣𝑝𝑟𝑖𝑛𝑡 to see the summary of the composition also. From this plot, we look for the total number of the 
decomposed levels. In this case, we have a total of 23 decomposition levels (start level = 0 and top level 
=22). The lower levels are composed of lower frequencies (slow changing) components extracted from the 
original data. Likewise, the higher levels are composed of higher frequency (fast changing) components. 

 

Figure 2. Detailed coefficient plot and decomposition summary 
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Figure 3. Multiresolution approximation of the signal corresponding to each decomposition level 

 Next, the wavelet decomposition based on a multiresolution analysis (MRA) is called using the 
command below: 

call mraApprox(decomp,,0,,); 

 The result of the 𝑚𝑟𝑎𝐴𝑝𝑝𝑟𝑜𝑥 call is shown in Figure 3. The time-series in each level is 
corresponding to the reconstruction based solely on the detail coefficient of that particular level. If no loss 
was introduced in analysis and synthesis phases, the summation of every level shown in Figure 3 is our 
original signal. Unfortunately, to the best of our knowledge, with the PROC IML version used in this analysis 
(12.1), there is no direct way to obtain any decomposed time-series from 𝑚𝑟𝑎𝐴𝑝𝑝𝑟𝑜𝑥 call. However, with 
available commands in PROC IML, we can reconstruct each corresponding time-series based on the MRA 
concept from the process that will be described as follows. 

By using the obtained coefficients in variable 𝑑𝑒𝑐𝑜𝑚𝑝 and its wavelet base function, we can 
reconstruct the original signal back or choose not to use some levels that corresponding to the noise in the 
signal in the reconstruction process. PROC IML has a built-in function to help eliminate noises in the signal 
with 𝑤𝑎𝑣𝑖𝑓𝑡 call which is the Inverse Fast Wavelet Transform (WAVIFT) via several thresholding methods 
such as hard, soft, and garrote thresholding methods (see [19] for more information). Now, to continue our 
decomposition, our next goal is to reconstruct the time-series corresponding to each decomposed level 
using MRA concept. Another way around is to manually keep each level of the reconstructed time-series 
by manually thresholding other non-desired level. It may sound simple but the 𝑤𝑎𝑣𝑖𝑓𝑡 call was not originally 
designed to do such task. First, the usage of 𝑤𝑎𝑣𝑖𝑓𝑡 call is as follows [19]: 

call WAVIFT(result,decomp<,opt>< ,level>); 

 The options we used is the hard threshold which corresponds to the equation 3 below [19]: 

 
𝛿𝑇

ℎ𝑎𝑟𝑑(𝑥) = 0 𝑖𝑓 |𝑥| ≤ 𝑇 
                       𝑥 𝑖𝑓 |𝑥| > 𝑇 

(3) 

 Intuitively, if the absolute value (magnitude) of the signal (|𝑥|) is smaller than or equal to the 
threshold value (𝑇), that data point will be set to zero, but if it is larger than the threshold, it will be set to 
itself. Thus, we will use a very high threshold on the levels that we would like to eliminate. The code used 
in this case is as follows (still in PROC IML shell): 
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n=nrow(signal);*declare array in proc iml; 
signal1=j(n,23,0); 
effect=j(n,23,0); 
temp=j(n,1,0); 

opt=j(4,23,0); 
opt[1,]=1; 
opt[2,]=0; 
opt[3,]=1000; 
opt[4,]=0:22; 
call wavift(buffer,decomp,opt[,1]); 

signal1[,1]=buffer; 
*reconstruct wavelet decomposed signal to all levels; 
do i=1 to 23; 
 call wavift(buffer,decomp,opt[,i]); 
 signal1[,i]=buffer; 
end; 

 

 To thoroughly explain the code above, the calculation in PROC IML is done in a matrix fashion so 
that it is a good practice to declare a dimension of the matrix that will be used. For example, a number of 
data point in 𝑠𝑖𝑔𝑛𝑎𝑙 is looked up and kept in variable 𝑛. Then, we will store the reconstruction results in the 

variable name 𝑠𝑖𝑔𝑛𝑎𝑙1 so that we declare the size of this variable to be 𝑛 row and 23 columns which is 
corresponding to the decomposition levels.  

For 𝑊𝐴𝑉𝐼𝐹𝑇 call options, the first option is to specify that the hard thresholding method will be 
used. Then, we specify option two to be 0 to use the global user-defined threshold. For the third option, this 
is a threshold value (𝑇 = 1000) which is pretty high comparing to our signal. Finally, the last option will 
specify the number of levels that the thresholding will be applied to, starting from the highest level. This 
means that we cannot apply the hard threshold exclusively on each detail coefficient. Again, the calculation 
method to get the individual reconstructed time-series will be explained later. For now, we will apply the 
threshold to the detail coefficient and reconstruct the decomposed signal starting from the lowest level 
iteratively until we reach the highest level of the decomposition. This is done by do-loop in the code above.  

In the first loop, we applied the threshold to the highest level at level 0, meaning that the 
thresholding was done to level 0 only. Therefore, the reconstructed signal in this loop is the signal that does 
not contain any effect from the detail coefficient at level 0. In the next loop, the thresholding was done to 
the highest level at level 1 and 0 so that the reconstructed signal does not contain any effect from level 0 
and level 1 detail coefficients. The process is executed until we reach the last level. The reconstructed 
signals without the effects are stored in variable 𝑠𝑖𝑔𝑛𝑎𝑙1 in the hierarchy fashion (highest to lowest). Finally, 
we can obtain the exclusively reconstructed time-series from each level detail coefficient (effect) by: 

*calculate effects; 
do i=1 to 23; 
 effect[,i]=signal-signal1[,i]-temp; 
 temp=temp+effect[,i]; 
end; 

 The idea is that, the first column of variable 𝑠𝑖𝑔𝑛𝑎𝑙1 is the time-series that does not contain any 
reconstructed component from level 0. Thus, if we subtract this time-series off the original signal (𝑠𝑖𝑔𝑛𝑎𝑙), 
what left is actually the reconstructed time-series exclusively from the level 0 detail coefficient (we will call 
this the effect 0). Thus, in the next iteration, the reconstructed time-series exclusively from the level 1 
coefficient (effect 1) could be derived from subtracting the time-series that does not contain any 
reconstructed component from level 0 and 1 (second column of variable 𝑠𝑖𝑔𝑛𝑎𝑙1) and effect 0 from the 
original signal (𝑠𝑖𝑔𝑛𝑎𝑙). This process is executed until we obtain all effect time-series equal to the number 
of decomposed levels. These decomposed time-series are much less complex than the original signal and 
contain different central dominant frequencies (from high to low). The process to quantify the characteristics 
of these signals in a frequency domain using PROC SPECTRA is explained in next section. 
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SPECTRAL ANALYSIS USING PROC SPECTRA 

Briefly, a spectral analysis is an analysis of the spectral contents or components in a frequency 
domain (i.e., the distribution of power over different frequencies) of a time-series [20]. Popular components 
are spectral and cross-spectral densities. The spectral density also known as a power spectral density 
(PSD) is the method for explaining how the variance of a time-series is distributed in the frequency domain. 
It quantifies the variance of the time-series at all frequencies (for more information please see [21] and 
[22]). The cross-spectral density also known as a cross power spectral density (CPSD) uses the same 
concept. It quantifies the variance shared by a given frequency for the two time-series using its amplitude 
squared and the phase shift between them at a given frequency. PROC SPECTRA estimates the spectral 
and cross-spectral densities using a periodogram and cross-periodogram obtained from a finite Fourier 
transform [23]:  

 

𝑥𝑡 =
𝑎0

2
+ ∑ 𝑓𝑘(𝑎𝑘𝑐𝑜𝑠𝜔𝑘𝑡 + 𝑏𝑘sin 𝜔𝑘𝑡)

𝑚−1

𝑘=1

 

𝑓𝑡 = {
0.5
1 

        
𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛 𝑎𝑛𝑑 𝑘 = 𝑚 − 1

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(4) 

Where  

𝑡 is the time subscript, t = 0,1,2,…, 𝑛 - 1  
𝑥𝑡 are the equally spaced time-series data 

𝑛 is the number of observations in the time-series 

𝑚 is the number of frequencies in the Fourier transform,  

𝑚 =
𝑛+2

2
 if 𝑛 is even and 𝑚 =

𝑛+1

2
 if 𝑛 is odd 

𝑘 is the frequency subscript, 𝑘 = 0,1,2, … , 𝑚 − 1 

𝑎0 is the mean term, 𝑎0 = 2𝑥̅ 

𝑎𝑘 are the cosine coefficients 

𝑏𝑘 are the sine coefficients 

𝜔𝑘 are the Fourier frequencies, 𝜔𝑘 =
2𝜋𝑘

𝑛
 

 

 The Fourier transform in equation (4) represents the time-series in terms of sine and cosine 
functions in different amplitudes and frequencies. A periodogram is a plot of functions of the Fourier 
coefficient  𝑎𝑘 and 𝑏𝑘 against frequency. It is a sequence of the amplitude periodogram, 𝐽𝑘, below [23]: 

 𝐽𝑘 =
𝑛

2
(𝑎𝑘

2 + 𝑏𝑘
2) (5) 

 For the amplitude cross-periodogram, 𝐽𝑘
𝑥𝑦

, can be defined below [23]: 

 𝐽𝑘
𝑥𝑦

=
𝑛

2
(𝑎𝑘

𝑥𝑎𝑘
𝑦

+ 𝑏𝑘
𝑥𝑏𝑘

𝑦
) + 𝑖

𝑛

2
(𝑎𝑘

𝑥𝑎𝑘
𝑦

+ 𝑏𝑘
𝑥𝑏𝑘

𝑦
) (6) 

Where  

𝑖 Is an imaginary part,  𝑖 = √−1 
𝑎𝑘

𝑥 are the cosine coefficients of time-series, 𝑥𝑡 

𝑎𝑘
𝑦
 are the cosine coefficients of time-series, 𝑦𝑡 

𝑏𝑘
𝑥 are the sine coefficients of time-series, 𝑥𝑡 

𝑏𝑘
𝑦
 are the sine coefficients of time-series, 𝑦𝑡 

 

 Finally, the spectral and cross-spectral densities are estimated by smoothing the periodogram and 
cross-periodogram respectively using a weight or window function. In this study, we use Tukey-Hanning 
window as a weight function because it gives very low aliasing and has good frequency resolution compared 
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to other weight functions. To demonstrate the spectral and cross spectral analysis using PROC SPECTRA, 
we simply run the code below: 

PROC spectra DATA=SC.ECGHRV_&I out=SC.ECGHRVPSD_&I CROSS A P S K PH S ADJMEAN; 
 VAR ECG HRV; 
 weights TUKEY 0.5 0; 
RUN; 
 

 The example above computes cross-spectral density estimates between variable ECG and HRV 
and other features as shown in Table 1 below (for complete option set please see [23]): 

PROC SPECTRA options 

Option Result 

CROSS output cross-spectral analysis results 

A output the amplitudes of the cross-spectrum 

P output the periodogram 

S output the spectral density estimates 

K output squared coherency of the cross-spectrum 

PH output the phase of the cross-spectrum 

S output the spectral density estimates 

ADJMEAN subtract the series mean 

WEIGHTS TUKEY specify the Tukey-Hanning for weight or window function 
used for smoothing spectral and cross-spectral periodogram 

Table 1. PROC SPECTRA options used in the analysis 

 From the options specified in the code about, there are 9 features computed from bivariate time-
series ECG, and HRV as follows [23]: 

Features Mathematical form Description 

𝑃_𝑛𝑛 𝐽𝑘
𝑥 =

𝑛

2
[(𝑎𝑘

𝑥)2 + (𝑏𝑘
𝑥)2] periodogram of time-series 𝑥𝑡 (periodograms of the bivariate 

time-series are calculated individually)  

𝑆_𝑛𝑛 
𝐹𝑘

𝑥 = ∑ 𝑊𝑗𝐽𝑘+𝑗
𝑥

𝑥

𝑗=−𝑝
 

(except across endpoint) 
spectral density estimate of time-series 𝑥𝑡 

𝑅𝑃_𝑛𝑛_𝑚𝑚 𝑅𝑒(𝐽𝑘
𝑥𝑦

) =
𝑛

2
(𝑎𝑘

𝑥𝑎𝑘
𝑦

+ 𝑏𝑘
𝑥𝑏𝑘

𝑦
) real part of cross-periodogram of time-series 𝑥𝑡 and 𝑦𝑡 

𝐼𝑃_𝑛𝑛_𝑚𝑚 𝐼𝑚(𝐽𝑘
𝑥𝑦

) =
𝑛

2
(𝑎𝑘

𝑥𝑎𝑘
𝑦

+ 𝑏𝑘
𝑥𝑏𝑘

𝑦
) imaginary part of cross-periodogram of time-series 𝑥𝑡 and 𝑦𝑡 

𝐶𝑆_𝑛𝑛_𝑚𝑚 
𝐶𝑘

𝑥𝑦
= ∑ 𝑊𝑗  𝑅𝑒(𝐽𝑘+𝑗

𝑥𝑦
)

𝑝

𝑗=−𝑝
 

(except across endpoint) 

cross-spectrum estimate (real part of cross-spectrum) of time-

series 𝑥𝑡 and 𝑦𝑡 

𝑄𝑆_𝑛𝑛_𝑚𝑚 
𝑄𝑘

𝑥𝑦
= ∑ 𝑊𝑗  𝐼𝑚(𝐽𝑘+𝑗

𝑥𝑦
)

𝑝

𝑗=−𝑝
 

(except across endpoint) 

quadrature spectrum estimate (imaginary part of cross-

spectrum) 

𝐴_𝑛𝑛_𝑚𝑚 
𝐴𝑘

𝑥𝑦
= √(𝐶𝑘

𝑥𝑦
)2 + (𝑄𝑘

𝑥𝑦
)2 amplitude (modulus) of cross-spectrum of time-series 𝑥𝑡 and 𝑦𝑡 

𝐾_𝑛𝑛_𝑚𝑚 𝐾𝑘
𝑥𝑦

= (𝐴𝑘
𝑥𝑦

)2/(𝐹𝑘
𝑥𝐹𝑘

𝑦
) coherency squared of time-series 𝑥𝑡 and 𝑦𝑡 

𝑃𝐻_𝑛𝑛_𝑚𝑚 Φ𝑘
𝑥𝑦

= arctan (𝑄𝑘
𝑥𝑦

/𝐶𝑘
𝑥𝑦

) phase spectrum in radians of time-series 𝑥𝑡 and 𝑦𝑡 

Table 2. PROC SPECTRA options used in the analysis 

 Besides spectral and cross-spectral density quantities, we also calculate for the coherency which 
tells the degree of relationship between two time-series as a function of frequency. All features in Tables 2 
will be used as predictors for building classification models later. 
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DATA DESCRIPTION AND PREPARATION 

The data used in this study is from Dr. Thomas Penzel of Philipps-University, Germany, and can 
be downloaded at www.physionet.org. The selected data consists of 10 recordings (7 OSAs, and 3 controls) 
of ECG collected overnight (more than 7 hours in each case), and non-overlapping-minute-by-minute OSA 
episode annotations diagnosed by a sleep physician (apnea and non-apnea states). All R-peaks in each 
ECG time-series were detected and converted to the HRV time-series (also available for download at the 
same website). The HRV tells how fast the heart pumps the blood to the body via blood vessels. The 
sampling rate for an ECG signal is 100 Hz (100 samples per second) so that 6,000 samples is equal to 
one-minute length of data which accompanies with the OSA episode annotation (diagnosed as apnea or 
non-apnea minute). After segmenting of the data into one-minute length windows, the overall data of the 
10 recordings account for a total of 4,998 events (2,532 non-apnea and 2,466 apnea minutes). 

METHODOLOGY 

 The idea is to deeply extract information that relates to OSA events from ECG and HRV data. We 
start from decomposing ECG and HRV time-series using wavelet analysis in SAS/IML. This results in 40 
decomposed time-series (20 wavelet decomposition levels of ECG and HRV time-series). Each 
decomposed, and original ECG and HRV time-series are then segmented into one-minute length data 
windows. Then, we do a spectral analysis on each time-series, and a cross-spectral analysis on each pair 
of all time-series. Moreover, to eliminate variations such as body build, age, gender, and health condition, 
we normalize each feature by the feature of its original signal (that is, ratio of spectral density of wavelet 
decomposed ECGs by spectral density of ECG). This accounts for 2,900 independent variables (features).  

Because the OSA symptoms are present not only in the apneic minute but some significant 
symptoms also appear before and after the apneic minute (i.e., increased heart rate and overshot 
respiration), we also included the features of ECG and HRV time-series of two minutes before and after the 
apneic minute into each data vector. Before having machine learning techniques to learn for patterns in the 
data to differentiate between apnea and non-apnea states, we use a Decision Tree to select only the 
variables that relate to the target variable (apnea and non-apnea states). Most of the variables are rejected, 
and there are 62 variables remain in an analysis. The data is partitioned into training and validation partitions 
(70:30). We use machine learning techniques namely, Logistic Regression, Decision Tree, Neural 
Networks, Support Vector Machine (SVM), and Random Forest, to build classification models having OSA 
states (apnea or non-apnea) as a target variable.  

  

Figure 4. Research methodology 

https://www.physionet.org/
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The best model is determined by the overall accuracy in the validation data partition. Finally, we 
use the best model to score the apnea event from features extracted from each subject individually to 
determine each subject’s AHI. The overall process is depicted in Figure 4. 

RESULTS 

 To choose which model is the best for an OSA diagnosis using one-lead ECG signal, we select the 
model that gives the highest predictive accuracy in the validation data partition. All model results are shown 
in Table 3 below: 

Model 
True positive 

rate (TPR) 
True negative 

rate (TNR) 
False positive 

rate (FPR) 
False negative 

rate (FNR) 
Accuracy 

Logistic Regression 82.85% 84.87% 15.13% 17.15% 83.86% 

Decision Tree 
(CART) 

90.06% 87.03% 12.97% 9.94% 88.54% 

Neural Network 89.77% 94.23% 5.77% 10.23% 92.00% 

Support Vector 
Machine (SVM) 

86.31% 85.88% 14.12% 13.69% 86.10% 

Random Forest 96.39% 97.26% 2.74% 3.61% 96.83% 

Table 3. Classification model performances in a validation data partition 

 Based on model performances in the validation data partition shown in Table 3 above, the 
classification model trained from a Random Forest modeling method gives the best accuracy of 96.83% 
with low FPR (2.74%) and FNR (3.61%). Furthermore, we also apply this model to each subject’s features 
extracted from an ECG data to see how it performs individually. The desired result for this study is a 
predicted apnea-hypopnea index (AHI) which is used for determining a severity of OSA clinically. It is 
calculated by: 

 𝐴𝐻𝐼 =
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑝𝑛𝑒𝑎 𝑎𝑛𝑑 ℎ𝑦𝑝𝑜𝑝𝑛𝑒𝑎 𝑒𝑣𝑒𝑛𝑡𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑙𝑒𝑒𝑝 𝑡𝑖𝑚𝑒 𝑖𝑛 𝑚𝑖𝑛𝑢𝑡𝑒
∙ 60 (7) 

 The summary of the best model’s performances is reported individually in Table 4 below: 

Apnea 
group 

Accuracy 
Total sleep 

min 

Actual 
Apnea 

min 

Predicted 
Apnea 

min 

Actual 
non-apnea 

min 

Predicted 
non-apnea 

min 

Actual 
AHI 

Predicted 
AHI 

a01 96.38% 487 470 485 17 2 57.90 59.75 

a02 96.86% 526 420 432 106 94 47.91 49.27 

a03 97.34% 517 246 249 271 268 28.55 28.89 

a15 91.55% 505 368 399 137 106 43.72 47.40 

a18 96.37% 487 438 443 49 44 53.96 54.57 

a19 97.10% 500 204 197 296 303 24.48 23.64 

a20 96.86% 508 315 319 193 189 37.20 37.67 

Control 
group 

Accuracy 
Total sleep 

min 

Actual 
Apnea 

min 

Predicted 
Apnea 

min 

Actual 
non-apnea 

min 

Predicted 
non-apnea 

min 

Actual 
AHI 

Predicted 
AHI 

c03 100 448 0 0 448 448 0 0 

c07 99.52 427 4 1 423 426 0.56 0.14 

c08 99.76 509 0 1 509 508 0 0.12 

Table 4. Summary of the classification model performance on each individual ECG data 

 Shown in Table 4, the accuracy of the model to predict the OSA event (apnea or non-apnea) using 
only one-lead ECG data is high (>96% in most cases). Comparing the actual AHI calculated by the actual 
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apnea minutes, with the predicted AHI calculated by the predicted apnea minutes, our model tends to 
slightly overestimate the AHI. However, the differences are very subtle in most cases.   

CONCLUSION 

This paper presents an application based on predictive analytics and feature-extraction techniques 
to develop the alternative method for diagnosis of obstructive sleep apnea (OSA). Our method reduces the 
time and cost associated with the gold standard or polysomnography (PSG), which is operated manually, 
by automatically determining the OSA’s severity of a patient via classification models using the time-series 
from a one-lead electrocardiogram (ECG) that can be collected overnight using on-the-shelf wearable 
devices.  

We use the nonlinear decomposition technique, wavelet analysis (WA) in SAS/IML® software, to 
maximize the information of OSA symptoms from ECG, resulting in useful predictor signals. Then, the 
spectral and cross-spectral analyses via PROC SPECTRA are used to quantify important patterns of those 
wavelet decomposed signals to numbers (features), namely power spectral density (PSD), cross power 
spectral density (CPSD), and coherency. To eliminate variations such as body build, age, gender, and 
health condition, we normalize each feature by the feature of its original signal (that is, ratio of PSD of ECGs 
WA by PSD of ECG). Moreover, because different OSA symptoms occur at different times, we account for 
this by taking features from adjacency minutes into analysis, and select only important ones using a 
decision tree model. 

To build classification models from those features to differentiate OSA states, we use machine 
learning techniques namely, Logistic Regression, Decision Tree, Neural Networks, Support Vector Machine 
(SVM), and Random Forest, in SAS® Enterprise Miner™. The best classification result in the validation 
data (70:30) obtained from the Random Forest model is 96.83% accuracy, 96.39% sensitivity, and 97.26% 
specificity. Furthermore, each subject’s apnea-hypopnea index (AHI) which is used for determining a 
severity of OSA clinically is calculated from the predicted OSA events and compared with the actual ones. 
The results suggest our method is well comparable to the gold standard. 
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