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ABSTRACT  

This paper proposes a technique to implement wavelet analysis (WA) for improving a forecasting 
accuracy of the autoregressive integrated moving average model (ARIMA) in nonlinear time-series. With 
the assumption of the linear correlation, and conventional seasonality adjustment methods used in ARIMA 
(that is, differencing, X11, and X12), the model might fail to capture any nonlinear pattern. Rather than 
directly model such a signal, we decompose it to less complex components such as trend, seasonality, 
process variations, and noises, using WA. Then, we use them as exogenous variables in the autoregressive 
integrated moving average with explanatory variable model (ARIMAX). We describe a background of WA. 
Then, the code and a detailed explanation of WA based on multi-resolution analysis (MRA) in 
SAS/IML® software are demonstrated. The idea and mathematical basis of ARIMA and ARIMAX are also 
given. Next, we demonstrate our technique in forecasting applications using SAS® Forecast Studio. The 
demonstrated time-series are nonlinear in nature from different fields. The results suggest that WA effects 
are good regressors in ARIMAX, which captures nonlinear patterns well. 

INTRODUCTION  

 In time-series prediction and forecasting applications, the statistical powers are mainly based on 
the underlying dynamics of the time-series itself (in case when explanatory or exogenous variables are 
unavailable or uncorrelated). As commonly known, the nonlinear or irregular behaviors embedded in the 
data always impede the predictability in both time-series and pattern recognition applications. This problem 
happens in many aspects. One of them is that, most of the time, we can only observe at most one of the 
process activities or its result, not all influences that comprise to the process. Thus, the characteristics of 
this observable data is always a result of couplings or interactions between several other unknown 
variables. This make the data patterns to be irregular and non-periodic. For example, we can easily observe 
a stock price but not all factors that influence the change in the price such as short or intermediate trends 
from investors and so on. If we assume that all influences comprising to the process are independent and 
we can directly observe their activities, most likely, the process could approximately be represented by a 
mathematical model that is built by a linear combination of the effects from all influence activities. This 
simplifies the problem from nonlinear system to the approximated linear system. Unfortunately, that is not 
always the case.  

We may assume that there might be trend, seasonality, regular, and irregular patterns embedded 
in the data using the background or historical knowledge. These influences could be easily tested using 
several built-in functions in SAS® Forecast Studio. However, as a data scientist, we may not be an expert 
in the domain of the analyzed data; therefore, we may have limited understanding in the focused system. 
To tackle this problem, another way around is that, instead of trying to model one complicate time-series, 
we can decompose the data into several or many less complex time-series then study their patterns 
separately. To do this, the wavelet transformation could be used to decompose the signal to several 
components such as trends, seasonality, signal’s variations, and noises based on their central dominant 
frequencies. These decomposed signals could be viewed as exogenous or explanatory variables. Each of 
them will be less complex and may correlate to the original time-series differently. This creates more regular 
patterns for the modeling techniques to learn, ensuing in more precise prediction or forecasting result. 

WAVELET TRANSFORMATION: BACKGROUND 

Wavelet decomposition is a modified short-time Fourier transform that represents the decomposed 
signals in both time and frequency domain through time windowing function or mother wavelet function [1]. 
Traditionally, the Fourier transform is normally used for analyzing the signal in frequency domain. However, 
in nonlinear time-series that contains short duration transients, Fourier transform failed to capture that 
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behavior. When transformed the short transient in time domain to frequency domain, it corresponds to a 
damped and long-duration vibration [2]. This time-frequency localization advantage is a well-known 
characteristic of a wavelet transformation. In contrast to Fourier transform, which assumes the signal to be 
stationary, the wavelet analysis does not have such limitation so that it works well with the nonstationary 
time-series.  

The wavelet transformation process comprises of two main phases, analysis or decomposition and 
synthesis or reconstruction phases. If the certain condition is met, the signal can be perfectly reconstructed 
using the coefficients obtained from the analysis or decomposition phase. With these reasons, the wavelet 
decomposition is popular in a signal denoising application. The user can selectively delete the decomposed 
coefficients corresponding to the noises and reconstruct the denoised signal back.  

There are several mathematical methods that could be used to achieve a wavelet decomposition. 
The one that seems to be intuitively easy to understand is a multiresolution analysis (MRA) developed by 
Mallat in 1989 [3]. In general discrete wavelet transformation (DWT), the signal is passed through a series 
of high-pass filters (mathematical tool that allows only fast changing value data to pass, otherwise zero) 
and low-pass filters (passing slow changing value data, otherwise zero) as shown in Figure 1 below: 

 

Figure 1. Discrete wavelet transform (DWT) using multiresolution analysis (MRA) with 3 level filter banks 

 The DWT procedure starts from feeding the time-series 𝑥[𝑛] to the half band low-pass filter with an 
impulse response 𝑔[𝑛] and half band high-pass filter with an impulse response h[n]. In mathematical 
expression, the filtering process is the convolution of the signal with the impulse response of the filter: 

 𝑥[𝑛] ∗ ℎ[𝑛] = ∑ 𝑥[𝑘] ∙ ℎ[𝑛 − 𝑘]

∞

𝑘=−∞

 (1) 

 Regarding to the Nyquist theory, after passing the signal through either a half band low-pass filter 
or a half band high-pass filter, half of the samples could be eliminated. This denotes by the symbol ↓2 in 
the Figure 1. The result of the first high-pass filter is level 1 detail coefficients. Likewise, the result of the 
first low-pass filter is level 1 approximation coefficients. To perform a further analysis, the level 1 
approximation coefficients are used as a signal to be passed through another set of half band low-pass and 
high-pass filters. In theory, the decomposition level could be done for n levels. However, in practice, the 
analysis levels depend on a number of samples of the original signal. It should be noted that because the 
decomposition process involves the downsampling with the factor of two. Thus, the number of samples 
required in the wavelet analysis must be the power of two. 

 In synthesis (reconstruction) phase, to be able to perfectly reconstruct the signal back from the 
wavelet coefficients in every decomposed level, the pair of low-pass and high-pass filters must form 
orthonormal bases. To satisfy that constrain, the relationship between them is [4]: 

 ℎ[𝐿 − 1 − 𝑛] = (−1)𝑛 ∙ 𝑔[𝑛] (2) 

Where ℎ[𝑛] is impulse response of a high-pass filter 

 𝑔[𝑛] is impulse response of a low-pass filter 

 𝐿 is the filter length in number of sample 

When the filter pair that satisfies equation 2 is used, the reconstruction process is exactly the 
reverse process of the analysis process. The coefficients at every level are upsampled with the factor of 
two then passed through the synthesis filter pairs. The relationship between the analysis and synthesis 
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filters is that they are identical to each other but time reversal. There are many choices of the low-pass and 
high-pass filter pairs used in wavelet analysis. SAS/IML® [5] provides two choices of wavelet family, the 
Daubechies Extremal phase family, and the Daubechies Least Asymmetric family (Symmlet family). For 
further information, reference [4] provides very good information on theory and application of wavelet 
decomposition.  

WAVELET DECOMPOSITION USING PROC IML 

 The goal of this section is to go through how a wavelet decomposition is processed in SAS/IML®. 
In this paper, we use SAS/IML® version 12.1 user guide [5] as a guideline, specifically Chapter 19 and 23 
for a wavelet analysis. To start, after the time-series data was successfully imported into SAS library. We 
can activate PROC IML using the following command: 

proc iml; 
 

 Unlike others, PROC IML works interactively inside its own shell. Once activated, the commands 
for computation are little different comparing to the normal commands. Now, we will start to do a wavelet 
decomposition using the commands bellow: 

use SASUSER.Winddatamod; *indicate the dataset to be used;   
read all var{SPEED80M_M_S_}into SPEED; 
optn ={0,.,2,10};*SYMLET10; 

call wavft(decomp,SPEED,optn); 
call coefficientPlot(decomp,,,,,"Summary of wavelet decomposition's coefficient");  

 

 The first line in the code above is to indicate which dataset to be used. In this case, dataset 
𝑊𝑖𝑛𝑑𝑑𝑎𝑡𝑎𝑚𝑜𝑑 from a library 𝑆𝐴𝑆𝑈𝑆𝐸𝑅 is assigned. Next, we read all values in variable 𝑆𝑃𝐸𝐸𝐷80𝑀_𝑀_𝑆_ 
into a variable name 𝑆𝑃𝐸𝐸𝐷 in PROC IML shell. Then, the options for our wavelet decomposition is 
assigned. Briefly, there are 4 options needed to be declared before the wavelet decomposition could be 
executed.  

The first element in vector 𝑜𝑝𝑡𝑛 (opt[1   ]) indicates how the signal boundary is handled. One of the 
wavelet analysis limitations is that the analysis signal must have a number of data points (N) in the 
increment of 2𝑛 where n=1,2,3…. SAS IML has a built-in function to handle this limitation using several 
options for padding the signal such as padding the signal by zero, the signal reflection, user specified 
number, and so on. In our case, we use zero padding because of its simplicity and manageable bias. 
However, to reduce the error introduced in the analysis process, it is suggested that the data should be 
format to the length of 2𝑛. In the next option, (opt[2   ]), the user can indicate the degree of the polynomial 
to be used in the data padding if the first option (opt[1   ]) is set to be 2. Since we use zero padding, this 
option will be ignored by PROC IML. For option 3, (opt[3   ]), the user must specify the method to be used 
for a decomposition. Symmlet family, (opt[3   ]=2), was chosen in our case because of its near symmetric 
property which is desirable in the reconstruction phase.  

Finally, the last option, (opt[4   ]), chooses which wavelet family member to be used in the 
decomposition. Generally, the wavelet family member indicates how enlarged or compressed the wavelet 
base function is (the higher number indicates more compressed wavelet base function). The choice for 
choosing this number depends solely on the user’s application. Some experiments may be needed before 
the final wavelet family member is chosen. For the demonstration, we use Symmlet10 in this case (opt[4   
]=10). For more information about the aforementioned options, please consult Chapter 19 and Chapter 23 
in the SAS/IML® user manual [5].  

After required options have been specified, we call a wavelet decomposition (𝑐𝑎𝑙𝑙 𝑤𝑎𝑣𝑓𝑡(…..)) on 

variable 𝑆𝑃𝐸𝐸𝐷 and its decomposition information will be stored in variable 𝑑𝑒𝑐𝑜𝑚𝑝. To visually inspect the 
decomposition, 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑃𝑙𝑜𝑡 call is used. The result is shown in the Figure 2. We can use the call 

𝑤𝑎𝑣𝑝𝑟𝑖𝑛𝑡 to see the summary of the composition also. From this plot, we look for the total number of the 
decomposed levels. In this case, we have a total of 18 decomposition levels (start level = 0 and top level 
=17). The lower levels are composed of lower frequencies (slow changing) components extracted from the 
original data. Likewise, the higher levels are composed of higher frequency (fast changing) components. 
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To interpret, we can look at the lower frequency levels to see if there is any trend or long-term seasonality, 
and at the higher frequency levels to look for noises or short time influences in the data. 

 

Figure 2. Detailed coefficient plot and decomposition summary 

 

Figure 3. Multiresolution approximation of the signal corresponding to each decomposition level 

 Next, the wavelet decomposition based on a multiresolution analysis (MRA) is called using the 
command below: 

call mraApprox(decomp,,0,,); 

 The result of the 𝑚𝑟𝑎𝐴𝑝𝑝𝑟𝑜𝑥 call is shown in Figure 3. The time-series in each level is 
corresponding to the reconstruction based solely on the detail coefficient of that particular level. If no loss 
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was introduced in analysis and synthesis phases, the summation of every level shown in Figure 3 is our 
original signal. Unfortunately, to the best of our knowledge, with the PROC IML version used in this analysis 
(12.1), there is no direct way to obtain any decomposed time-series from 𝑚𝑟𝑎𝐴𝑝𝑝𝑟𝑜𝑥 call. However, with 
available commands in PROC IML, we can reconstruct each corresponding time-series based on the MRA 
concept from the process that will be described as follows. 

By using the obtained coefficients in variable 𝑑𝑒𝑐𝑜𝑚𝑝 and its wavelet base function, we can 
reconstruct the original signal back or choose not to use some levels that corresponding to the noise in the 
signal in the reconstruction process. PROC IML has a built-in function to help eliminate noises in the signal 
with 𝑤𝑎𝑣𝑖𝑓𝑡 call which is the Inverse Fast Wavelet Transform (WAVIFT) via several thresholding methods 
such as hard, soft, and garrote thresholding methods (see [5] for more information). Now, to continue our 
decomposition, our next goal is to reconstruct the time-series corresponding to each decomposed level 
using MRA concept. Another way around is to manually keep each level of the reconstructed time-series 
by manually thresholding other non-desired level. It may sound simple but the 𝑤𝑎𝑣𝑖𝑓𝑡 call was not originally 
designed to do such task. First, the usage of 𝑤𝑎𝑣𝑖𝑓𝑡 call is as follows [5]: 

call WAVIFT(result,decomp<,opt>< ,level>); 

 The options we used is the hard threshold which corresponds to the equation 3 below [5]: 

 
𝛿𝑇

ℎ𝑎𝑟𝑑(𝑥) = 0 𝑖𝑓 |𝑥| ≤ 𝑇 
                       𝑥 𝑖𝑓 |𝑥| > 𝑇 

(3) 

 Intuitively, if the absolute value (magnitude) of the signal (|𝑥|) is smaller than or equal to the 

threshold value (𝑇), that data point will be set to zero, but if it is larger than the threshold, it will be set to 
itself. Thus, we will use a very high threshold on the levels that we would like to eliminate. The code used 
in this case is as follows (still in PROC IML shell): 

n=nrow(SPEED); *declare array size in proc iml; 
wind=j(n,18,0); 
effect=j(n,18,0); 
temp=j(n,1,0); 

opt=j(4,18,0); 
opt[1,]=1; 
opt[2,]=0; 
opt[3,]=100; 
opt[4,]=0:17; 
call wavift(buffer,decomp,opt[,1]); 

wind[,1]=buffer; 
*Apply the threshold and reconstruct wavelet decomposed signal to all levels; 

do i=1 to 18; 
call wavift(buffer,decomp,opt[,i]); 
wind[,i]=buffer; 

end; 
 

 To thoroughly explain the code above, the calculation in PROC IML is done in a matrix fashion so 
that it is a good practice to declare a dimension of the matrix that will be used. For example, a number of 
data point in 𝑆𝑃𝐸𝐸𝐷 is looked up and kept in variable 𝑛. Then, we will store the reconstruction results in the 

variable name 𝑤𝑖𝑛𝑑 so that we declare the size of this variable to be 𝑛 row and 18 columns which is 
corresponding to the decomposition levels.  

For 𝑊𝐴𝑉𝐼𝐹𝑇 call options, the first option is to specify that the hard thresholding method will be 
used. Then, we specify option two to be 0 to use the global user-defined threshold. For the third option, this 
is a threshold value (𝑇 = 100) which is pretty high comparing to our signal. Finally, the last option will 
specify the number of levels that the thresholding will be applied to, starting from the highest level. This 
means that we cannot apply the hard threshold exclusively on each detail coefficient. Again, the calculation 
method to get the individual reconstructed time-series will be explained later. For now, we will apply the 
threshold to the detail coefficient and reconstruct the decomposed signal starting from the lowest level 
iteratively until we reach the highest level of the decomposition. This is done by do-loop in the code above.  
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In the first loop, we applied the threshold to the highest level at level 0, meaning that the 
thresholding was done to level 0 only. Therefore, the reconstructed signal in this loop is the signal that does 
not contain any effect from the detail coefficient at level 0. In the next loop, the thresholding was done to 
the highest level at level 1 and 0 so that the reconstructed signal does not contain any effect from level 0 
and level 1 detail coefficients. The process is executed until we reach the last level. The reconstructed 
signals without the effects are stored in variable 𝑤𝑖𝑛𝑑 in the hierarchy fashion (highest to lowest). Finally, 
we can obtain the exclusively reconstructed time-series from each level detail coefficient (effect) by: 

*calculate effects; 
do i=1 to 18; 
effect[,i]=SPEED-wind[,i]-temp; 
temp=temp+effect[,i]; 
end; 
 

 The idea is that, the first column of variable 𝑤𝑖𝑛𝑑 is the time-series that does not contain any 

reconstructed component from level 0. Thus, if we subtract this time-series off the original signal (𝑆𝑃𝐸𝐸𝐷), 
what left is actually the reconstructed time-series exclusively from the level 0 detail coefficient (we will call 
this the effect 0). Thus, in the next iteration, the reconstructed time-series exclusively from the level 1 
coefficient (effect 1) could be derived from subtracting the time-series that does not contain any 
reconstructed component from level 0 and 1 (second column of variable 𝑤𝑖𝑛𝑑) and effect 0 from the original 

signal (𝑆𝑃𝐸𝐸𝐷). This process is executed until we obtain all effect time-series equal to the number of 
decomposed levels. An example of the effects with the original signal is shown in Figure 4 below: 

 

Figure 4. A plot between the original signals and some wavelet-decomposed components 

 Shown in Figure 4 above is a plot of the original time-series used in this example which is a wind 
speed (solid line) and some of its wavelet decomposed signals. We can see a nonlinear pattern that 
impedes the ability to accurately forecast this original time-series. Intuitively, we can think of this signal as 
a combination of many simple signals. Using the aforementioned wavelet decomposition method, we 
decomposed the original signal to many levels based on their center frequencies. This helps unfolding the 
very complicated original signal to much simpler signals so that we can analyze each of them individually 
then use their information to infer back to the original time-series. For example, the reconstructed time-
series level 9 (EFF9) can capture a slow seasonal pattern in the original data well and is much simpler to 
analyze. Also, the EFF10 captures much slower trend of the data precisely. Furthermore, the EFF 6 
captures much faster seasonal patterns. With these characteristics, these decomposed signals can be used 
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as explanatory variables in ARIMAX model to improve the forecasting accuracy, especially in the long-term 
forecasting applications that will be demonstrated in the next sections. 

The challenging task for the user after this is that they will have to look at each decomposed signal 
individually and infer their meanings based on the specific knowledge area. For example, in this case, we 
may interpret the EFF6 as a seasonality pattern effected by differences in day and night temperatures that 
influence the wind speed.  

ARIMA MODEL 

 The well-known autoregressive integrated moving average (ARIMA) model was first introduced by 
Box and Jenkins [6]. In brief, the ARIMA model utilized the history information of a univariate stochastic 
time-series and use it to minimize the model’s forecasting error. There are three components in the model, 
autoregressive process (AR), integration (I), and moving average process (MA). Originally, the model 
structure of ARMA (without integration (I) part) only allows to be used with the stationary time-series. 
Practically speaking, the (weak) stationary means that the mean, variance, and covariance of time-series 
remain constant over time. However, most of time-series shows trend over time. Therefore, the integration 
(I) or differencing can be used to remove such trend, making the time-series stationary.  

 An autoregressive process (AR), is a process that has a significant relationship with its history 
observations (previous time lags) and a moving average process (MA) is a process that has a significant 
relationship with its previous random errors. The complete ARIMA model is a linear combination of AR and 
MA processes or ARMA that their parameters derived from a time-series that becomes stationary through 
differencing with the form: 

 𝑦𝑡 = 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 + ⋯ + 𝜙𝑝𝑦𝑡−𝑝 + 𝑒𝑡 − 𝜃1𝑒𝑡−1 − 𝜃2𝑒𝑡−2 − ⋯ − 𝜃𝑞𝑒𝑡−𝑞 (4) 

 We say that time-series 𝑦𝑡 is an ARIMA (𝑝, 𝑑, 𝑞) process where 𝑑 indicates a number of differencing 

needed for a stationary, and 𝑝 and 𝑞 indicate a number of AR and MA parameters. A time information is 

indicated by a subscript 𝑡 (i.e., 𝑡 indicates a current observation and 𝑡 − 1 indicates a previous one time-
step observation). Note that an augmented dickey fuller (ADF) test is normally used for testing a stationary.  

 To build an ARIMA model using Box and Jenkins approach, there are three iterative steps: 

1. Identification stage; Identify a number of parameters needed for AR and MA processes. The idea 
is to match the empirical autocorrelation patterns with the theoretical ones. An autocorrelation 
function (ACF) plot and a partial autocorrelation function (PACF) plot are primary tools used for 
identifying a number of parameters for AR and MA processes respectively. Some other tools such 
as an extended autocorrelation function (EACF) may also be used. This is to come up with 
candidate models.   

2. Estimation stage; The parameter coefficients for all candidate models are estimated in this stage. 
The standard method for a parameter estimation is a maximum likelihood estimation. Then, the 
best model is selected best on their Akaike information criterion (AIC) or Bayesian information 
criterion (BIC). Intuitively, AIC and BIC tell which model fits better to the data in term of the 
information loss.  

3. Diagnostic stage; The residual of the selected model is tested against a white noise assumption 
(zero mean, no autocorrelation, normality, and constant variance). If the residual violates the white 
noise assumption, the model candidate is rejected and the next best model candidate is then 
tested. 

ARIMAX MODEL 

 Intuitively, the autoregressive integrated moving average with explanatory variable (ARIMAX) 
model can be viewed as a time-series forecasting model using the multiple regression with ARIMA model 
that takes care of the residual’s serial correlations. Therefore, to build ARIMAX model, one can follow the 
stepwise multiple regression method to develop a multiple regression model that well fits to the time-series. 
Then, build the ARIMA model to fit the residual of the regression model. The ARIMAX model has a form as 
follows: 
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 𝑦𝑡 =  𝛽𝑥𝑡 +  𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 + ⋯ + 𝜙𝑝𝑦𝑡−𝑝 + 𝑒𝑡 − 𝜃1𝑒𝑡−1 − 𝜃2𝑒𝑡−2 − ⋯ − 𝜃𝑞𝑒𝑡−𝑞 (5) 

However, the process to build such model is iteratively complex because the result from each 
model building step can violate required assumptions. The reference [7] has concluded such assumptions 
as follows: 

1. Both time-series used for building the regression model and the residual must be stationary. If the 
residual is not stationary, more differencing of original time-series is needed and the regression 
model must be rebuilt. 

2. The final model’s residual follows the white noise assumption. 

3. The coefficients of each exogenous variable in the final model must be statistically significant. In 
some occasions, after building the ARIMA model for the regression model’s residual, some 
regression’s coefficients can become insignificant. Then, the least significant coefficient must be 
removed and all assumptions must be reevaluated. 

4. There could be only one-way causal relationship from an exogenous variable to a dependent 
variable but not from a dependent variable to an exogenous variable (using Granger causality test). 
If the reverse causal relationship is found, that exogenous variable must be removed and all 
assumptions must be reevaluated. 

5. The regression coefficients in the final model must display the same relationship (sign) with the 
correlation coefficients of the exogenous variables and the dependent variable (original time-
series). 

6. There is no multicollinearity found between exogenous variables in the final model. 

In this and previous sections, we introduce a basic background of the ARIMA and ARIMAX model 
so that the reader can have intuitive idea about them and how the wavelet decomposed signals can be 
used to improve the forecasting accuracy. However, to develop a time-series forecasting model, SAS® 
Forecast Studio implements more sophisticated methods such as ARIMA with seasonality adjustments, 
and transfer function models which are more advanced topics that could not fit in this paper. For more 
information, please consult these SAS user guides [8, 9]. 

DATA DESCRIPTION AND PREPARATION 

 To demonstrate the proposed technique, we choose to use three complicated datasets from various 
fields with irregular or nonlinear patterns which are challenging for forecasting:  

1. Heart rate variability (HRV) of a sleep apnea and cardiovascular patient from National Institutes of 
Health (NIH) with 72,000 samples (sampled every 10 seconds, accounting for 120 minutes of 
HRV). The HRV is normally used for detecting cardiovascular and sleep disorder diseases. The 
forecasted information of this data could help preventing the incoming attacks which could be 
intervened before they really occur. 

2. Daily S&P 500 close values with 5,200 samples (January 3, 1995 – August 26, 2015, from Yahoo 
Finance). This time-series is quite different from the other two that it shows not only the nonlinearity 
patterns but also the nonstationary trait (ADF tests suggested with p > 0.05).  

3. Wind speed collected at a wind turbine from National Renewable Energy Laboratory with 30,528 
samples (sampled every 10 minutes) from January 1 to July 31, 2005 (station ID 00365 in Eastern 
Wind Dataset) [10].  

To prepare the data for an analysis in SAS® Forecast Studio, the processes needed to be carried 
out before the analysis are 1) combine the DATE variable with TIME variable 2) format the combined 
variable to comply with Time ID Variable format that can be used in SAS® Forecast Studio, and 3) wavelet 
decomposition of each time-series using PROC IML [6]. The modeling process will be described in the next 
section. 
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METHODOLOGY 

To recapitulate, the goal of this study is to demonstrate the usefulness of wavelet transformation in 
long-term time-series forecasting applications. To do so, we already explained the idea and code for a 
wavelet decomposition using SAS/IML® in previous sections. In this section, we integrate the wavelet 
decomposed data into the ARIMAX model as exogenous variables and compare its forecasting 
performances to the ones from the conventional model, ARIMA. To minimize a modeler’s bias in modeling 
process, we use SAS® Forecast Studio that follows ARIMA and ARIMAX modeling assumptions rigorously 
to automatically build 1) ARIMA model from the nonlinear time-series alone, and 2) ARIMAX model built 
from the nonlinear time-series as dependent variable and its wavelet decompositions using PROC IML as 
exogenous variables. To summarize, the process is depicted in Figure 5 below: 

 

Figure 5. Research methodology 

We also implement a data partitioning strategy to reflect a real-world performance of the proposed 
technique. A training partition is used for candidate models development. Then, the best model is chosen 
from its performances, mean absolute percentage error (MAPE) and adjusted R-squared, in a hold-out 
partition which is not initially included in the training partition. Finally, the out-of-sample partition is used for 
evaluating the real-world performances of each chosen model. The data partitioning scenarios used in this 
study are shown in Table 1 below: 

Data Training partition Hold-out partition Out-of-sample partition 

Heart rate variability (HRV) 66,000 samples 3,000 samples 3,000 samples 

Daily S&P 500 close values 4,960 samples 120 samples 120 samples 

Wind speed 28,512 samples 1,008 samples 1,008 samples 

Table 1. Data partitioning scenarios 

We tried to have a training partition as long as possible to cover all the patterns embedded in the 
data. We also decide to have the length of the hold-out partition to be the same as the out-of-sample 
partition which is the desired forecasting horizon. The model performances are reported in the next section. 

RESULTS 

We compare ARIMA and ARIMAX-WD models using mean absolute percentage (MAPE) and 
adjusted R-squared in the out-of-sample data partition. The results are reported in three cases below: 
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Case I: Heart rate variability (HRV) with a forecasting horizon of 3,000 samples. 

(note that the time information on x-axis of the plots does not reflect the real date or time due to limited 
options in SAS® Forecast Studio). 

 

Model Model architecture In-sample Out-of-sample 

MAPE adj. R-sq. MAPE adj. R-sq. 

Multiplicative Seasonal 

ARIMA 

Differencing:   ( 0 ) 
P:  ( 1,2,3,4 ) ( 10,20 ) 
Q:  ( 1,2,3,4,5 ) ( 10,20 ) 

0.59 99.68% 11.35 -44.69% 

ARIMAX-WD 

Differencing:   ( 0 ) 
P:  ( 1,2,3,4,5 ) ( 10 ) 
Q:  ( 1,2,3,4,5 ) ( 10,20 ) 

Exogenous variable 

WD: (7,8,9,10,11,12) 

0.0074 99.99% 4.99 74.62% 

Table 2. Comparison of forecasting performances of the two models in out-of-sample HRV data 

 

 

Figure 6. A plot between the actual and forecasted data using ARIMA model in HRV data (in-sample) 

 

 
Figure 7. A plot between the actual and forecasted data using ARIMA model in HRV data (out-of-sample) 
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Figure 8. A plot between the actual and forecasted data using ARIMAX-WD model using in HRV data (in-
sample) 

 

 
Figure 9. A plot between the actual and forecasted data using ARIMAX-WD model in HRV data (out-of-

sample) 

 

 In HRV forecasting case (forecasting horizon: 3,000 samples), the results in Table 2 and Figure 6 
and 8, suggest that both multiplicative seasonal ARIMA and ARIMAX-WD perform well in an in-sample data 
with low MAPE (0.59 and 0.0074) and high adjusted R-squared (99.68% and 99.99%). However, in out-of-
sample data, the multiplicative seasonal ARIMA cannot keep up with a complex data pattern as seen from 
results in Table 2 (MAPE:11.35 and adj. R-sq:-44.69%) and Figure 7, whereas the ARIMAX-WD can 
forecast well with the reasonable results (MAPE:4.99 and adj. R-sq:74.62%) (see Figure 9). 
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Case II: Daily S&P500 close values with a forecasting horizon of 120 samples (120 days). 

 

Model Model architecture In-sample Out-of-sample 

MAPE adj. R-sq. MAPE adj. R-sq. 

ARIMA 

Differencing:   ( 1 ) 
P:  ( 1 ) 

0.82 99.83% 2.76 -1.59% 

ARIMAX-WD 

Differencing:   ( 1 ) 
P:  ( 1 ) 

Exogenous variable 

WD: (3,4,5,6,7,8) 

0.51 99.93% 0.90 65.52% 

Table 3. Comparison of forecasting performances of the two models in out-of-sample daily S&P500 close 
value data 

 

Figure 10. A plot between the actual and forecasted data using ARIMA model in daily S&P500 close value 
data (in-sample) 

 

 
Figure 11. A plot between the actual and forecasted data using ARIMA model in daily S&P500 close value 

data (out-of-sample) 
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Figure 12. A plot between the actual and forecasted data using ARIMAX-WD model using in daily S&P500 
close value data (in-sample) 

 

 
Figure 13. A plot between the actual and forecasted data using ARIMAX-WD model in daily S&P500 close 

value data (out-of-sample) 

 

In daily S&P500 close value forecasting case (forecasting horizon: 120 samples), both models 
perform well in the in-sample data (see Figure 10 and 12) as seen from low MAPE and high adjusted R-
squared in Table 3. Again, in the out-of-sample data partition, ARIMAX-WD model performs better with 
reasonable results (MAPE: 0.9, adj. R-sq.: 65.52%). Note that the model is also able to forecast a drastic 
fall and a recovery event in the very last part of the time-series shown in Figure 13. 
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Case III: Wind speed with a forecasting horizon of 1,008 samples (7 days). 

(note that the time information on x-axis of the plots does not reflect the real date or time). 

 

Model Model architecture In-sample Out-of-sample 

MAPE adj. R-sq. MAPE adj. R-sq. 

ARIMA 

Differencing:   ( 0 ) 
P:  ( 1,2 ) 
Q:  ( 1,2,3,4,5 ) 

4.44 97.47% 40.30 11.30% 

ARIMAX-WD 

Differencing:   ( 0 ) 
P:  ( 1,2,3 ) 
Q:  ( 1,2,3,4,5 ) 

Exogenous variable 

WD: (3,4,6,7,8,9,10,11,12,14) 

2.57 99.18% 8.21 93.25% 

Table 4. Comparison of forecasting performances of the two models in out-of-sample wind speed data 

 

Figure 14. A plot between the actual and forecasted data using ARIMA model in wind speed data (in-sample) 

 

 
Figure 15. A plot between the actual and forecasted data using ARIMA model in wind speed data (out-of-

sample) 
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Figure 16. A plot between the actual and forecasted data using ARIMAX-WD model using in wind speed data 
(in-sample) 

 

 
Figure 17. A plot between the actual and forecasted data using ARIMAX-WD model in wind speed data (out-

of-sample) 

 

 In the wind speed forecasting case (forecasting horizon: 1,008 samples), although the ARIMA 
model performs well in the in-sample data partition (see Table 4 and Figure 14), it does poorly in the out-
of-sample data partition (MAPE: 40.30, adj. R-sq.: 11.30%) (see Figure 15). However, the ARIMAX-WD 
still performs reasonably well in out-of-sample data partition with MAPE: 8.21 and adj. R-sq.: 93.25% (see 
Figure 17).  

CONCLUSION 

To be able to forecast accurately is an important task in all business domains. ARIMA model is one 
of the recognized time-series forecasting methods because of its solid foundation, and straightforward 
interpretation. Although there are many extensions available for this model such as seasonality adjustment 
methods, the model may not perform well to capture nonlinear patterns embedded in the data because of 
the ground of a linearity assumption.  

To solve the problem, we proposed the method using a wavelet transformation to decompose a 
nonlinear time-series into less complex time-series based on their dominant frequencies. Then, use these 
time-series as explanatory variables in ARIMAX model. We demonstrate the usefulness of this method by 
comparison of the proposed model’s performances to the performances of the ARIMA model (including 
seasonal adjustment method) in nonlinear data from several fields. The results suggest that the proposed 
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ARIMAX model using wavelet decomposed signals as explanatory variables (ARIMAX-WD) performs well 
in a long-term and nonlinear time-series forecasting application. Moreover, the wavelet decomposed time-
series resulted from a decomposition also give insightful information about the underlying dynamics of the 
original time-series. 
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